2011 AMC 12A Problems/Problem 25

Revision as of 12:05, 28 June 2022 by Shihan (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Triangle $ABC$ has $\angle BAC = 60^{\circ}$, $\angle CBA \leq 90^{\circ}$, $BC=1$, and $AC \geq AB$. Let $H$, $I$, and $O$ be the orthocenter, incenter, and circumcenter of $\triangle ABC$, respectively. Assume that the area of pentagon $BCOIH$ is the maximum possible. What is $\angle CBA$?

$\textbf{(A)}\ 60^{\circ} \qquad \textbf{(B)}\ 72^{\circ} \qquad \textbf{(C)}\ 75^{\circ} \qquad \textbf{(D)}\ 80^{\circ} \qquad \textbf{(E)}\ 90^{\circ}$

Solution 1 (MAA)

By the Inscribed Angle Theorem, \[\angle BOC = 2\angle BAC = 120^\circ .\]Let $D$ and $E$ be the feet of the altitudes of $\triangle ABC$ from $B$ and $C$, respectively. In $\triangle ACE$ we get $\angle ACE = 30^\circ$, and as exterior angle \[\angle BHC = 90^\circ + \angle ACE = 120^\circ .\]Because the lines $BI$ and $CI$ are bisectors of $\angle CBA$ and $\angle ACB$, respectively, it follows that\[\angle BIC = 90^\circ + \tfrac 12\angle A = 120^\circ .\]Thus the points $B, C, O, I$, and $H$ are all on a circle. [asy] import geometry; size(200); defaultpen(fontsize(12)+0.8);   pair O,A,B,C,D,E,I,H; real h=2*sqrt(3); O=(0,1/h); B=(-0.5,0); C=(0.5,0); path c1=CR(O,length(O-B)); // A=IP(c1,O--O+5*dir(120)); A=IP(c1,B--B+5*dir(80)); I=incenter(A,B,C); H=orthocenter(A,B,C); D=extension(A,C,B,H); E=extension(A,B,C,H); path c2=circumcircle(O,I,H); pair o2=circumcenter(O,I,H); draw(c1, royalblue); draw(A--B--C--A); draw(B--D^^C--E, dotted); draw(arc(o2,length(O-o2),10,170), dotted+red); draw(B--I--C--O--B, black+0.3); pen p =black+3.25;  dot("$O$", O, N,p);  dot("$A$", A, dir(110),p); dot("$B$", B, dir(210),p); dot("$C$", C, dir(-30),p); dot("$I$", I, N,p); dot("$H$", H, N,p); dot("$D$", D, D-H,p); dot("$E$", E, (E-C),p); [/asy] Further, since \[\angle OCI = \angle OCB - \angle ICB = 30^\circ - \tfrac 12\angle C\] \[\angle ICH = \angle ACE - \angle ACI = 30^\circ - \tfrac 12\angle C\] we have $OI=IH$.

Because $[BCOIH]=[BCO]+[BOIH]$, it is sufficient to maximize the area of quadrilateral $BOIH$. If $P_1$, $P_2$ are two points in an arc of circle $BO$ with $BP_1<BP_2$, then the maximum area of $BOP_1P_2$ occurs when $BP_1=P_1P_2=P_2O$. Indeed, if $BP_1\neq P_1P_2$, then replacing $P_1$ by the point $P_1’$ located halfway in the arc of the circle $BP_2$ yields a triangle $BP_1’P_2$ with larger area than $\triangle BP_1P_2$, and the area of $\triangle BOP_2$ remains the same. Similarly, if $P_1P_2\neq P_2O$.

Therefore the maximum is achieved when $OI=IH=HB$, that is, when \[\angle OCI = \angle ICH = \angle HCB = \tfrac 13 \angle OCB = 10^\circ.\]Thus $\angle ACB = 40^\circ$ and $\angle CBA = 80^\circ$.

Solution 2

Let $\angle CAB=A$, $\angle ABC=B$, $\angle BCA=C$ for convenience.

It's well-known that $\angle BOC=2A$, $\angle BIC=90+\frac{A}{2}$, and $\angle BHC=180-A$ (verifiable by angle chasing). Then, as $A=60$, it follows that $\angle BOC=\angle BIC=\angle BHC=120$ and consequently pentagon $BCOIH$ is cyclic. Observe that $BC=1$ is fixed, hence the circumcircle of cyclic pentagon $BCOIH$ is also fixed. Similarly, as $OB=OC$(both are radii), it follows that $O$ and also $[BCO]$ is fixed. Since $[BCOIH]=[BCO]+[BOIH]$ is maximal, it suffices to maximize $[BOIH]$.

Verify that $\angle IBC=\frac{B}{2}$, $\angle HBC=90-C$ by angle chasing; it follows that $\angle IBH=\angle HBC-\angle IBC=90-C-\frac{B}{2}=\frac{A}{2}-\frac{C}{2}=30-\frac{C}{2}$ since $A+B+C=180\implies\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90$ by Triangle Angle Sum. Similarly, $\angle OBC=(180-120)/2=30$ (isosceles base angles are equal), hence \[\angle IBO=\angle IBC-\angle OBC=\frac{B}{2}-30=60-\frac{A}{2}-\frac{C}{2}=30-\frac{C}{2}\] Since $\angle IBH=\angle IBO$, $IH=IO$ by Inscribed Angles.

There are two ways to proceed.


Letting $O'$ and $R$ be the circumcenter and circumradius, respectively, of cyclic pentagon $BCOIH$, the most straightforward is to write $[BOIH]=[OO'I]+[IO'H]+[HO'B]-[BO'O]$, whence \[[BOIH]=\frac{1}{2}R^2(\sin(60-C)+\sin(60-C)+\sin(2C-60)-\sin(60))\] and, using the fact that $R$ is fixed, maximize $2\sin(60-C)+\sin(2C-60)$ with Jensen's Inequality.


A more elegant way is shown below.

Lemma: $[BOIH]$ is maximized only if $HB=HI$.

Proof by contradiction: Suppose $[BOIH]$ is maximized when $HB\neq HI$. Let $H'$ be the midpoint of minor arc $BI$ be and $I'$ the midpoint of minor arc $H'O$. Then $[BOIH']=[IBO]+[IBH']>[IBO]+[IBH]=[BOIH]$ since the altitude from $H'$ to $BI$ is greater than that from $H$ to $BI$; similarly $[BH'I'O]>[BOIH']>[BOIH]$. Taking $H'$, $I'$ to be the new orthocenter, incenter, respectively, this contradicts the maximality of $[BOIH]$, so our claim follows. $\blacksquare$

With our lemma($HB=HI$) and $IH=IO$ from above, along with the fact that inscribed angles that intersect the same length chords are equal, \[\angle ABC=2\angle IBC=2(\angle OBC+\angle OBI)=2(30+\frac{1}{3}\angle OCB)=80\implies\boxed{(D)}\]

Video Solution by Osman Nal

https://www.youtube.com/watch?v=O3amRG9zEHE&ab_channel=OsmanNal

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png