2021 AIME I Problems/Problem 13
Problem
Circles and with radii and , respectively, intersect at distinct points and . A third circle is externally tangent to both and . Suppose line intersects at two points and such that the measure of minor arc is . Find the distance between the centers of and .
Solution
Let and be the center and radius of , and let and be the center and radius of .
Since extends to an arc with arc , the distance from to is . Let . Consider . The line is perpendicular to and passes through . Let be the foot from to ; so . We have by tangency and . Let . Since is on the radical axis of and , it has equal power with respect to both circles, so since . Now we can solve for and , and in particular, We want to solve for . By the Pythagorean Theorem (twice): Therefore, .
Solution 2 (Official MAA, Unedited)
Denote by , , and the centers of , , and , respectively. Let and denote the radii of and respectively, be the radius of , and the distance from to the line . We claim thatwhere . This solves the problem, for then the condition implies , and then we can solve to get .
Denote by and the centers of and respectively. Set as the projection of onto , and denote by the intersection of with . Note that . Now recall thatFurthermore, note thatSubstituting the first equality into the second one and subtracting yieldswhich rearranges to the desired.
Video Solution
Who wanted to see animated video solutions can see this. I found this really helpful.
P.S: This video is not made by me .And solution is same like below solutions.
≈@rounak138
See also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.