2021 AIME I Problems/Problem 9

Revision as of 16:06, 12 March 2021 by Mathpro12345 (talk | contribs) (Problem)

Solution 1

Construct your isosceles trapezoid. Let, for simplicity, $AB = a$, $AD = BC = b$, and $CD = c$. Extend the sides $BC$ and $AD$ mark the intersection as $P$. Following what the question states, drop a perpendicular from $A$ to $BC$ labeling the foot as $G$. Drop another perpendicular from $A$ to $CD$, calling the foot $E$. Lastly, drop a perpendicular from $A$ to $BD$, labeling it $F$. In addition, drop a perpendicular from $B$ to $AC$ calling its foot $F'$.

--DIAGRAM COMING SOON--

Start out by constructing a triangle $ADH$ congruent to $\triangle ABC$ with its side of length $a$ on line $DE$. This works because all isosceles triangles are cyclic and as a result, $\angle ADC + \angle ABC = 180^\circ$.

Notice that $\triangle AGC \sim \triangle BF'C$ by AA similarity. We are given that $AG = 15$ and by symmetry we can deduce that $F'B = 10$. As a result, $\frac{BF}{AG} = \frac{BC}{AC} = \frac{3}{2}$. This gives us that $AC = BD = \frac{3}{2} b$.

The question asks us along the lines of finding the area, $K$, of the trapezoid $ABCD$. We look at the area of $ABC$ and notice that it can be represented as $\frac{1}{2} \cdot AC \cdot 10 = \frac{1}{2} \cdot a \cdot 18$. Substituting $AC = \frac{3}{2} b$, we solve for $a$, getting $a = \frac{5}{6} b$.

Now let us focus on isosceles triangle $ACH$, where $AH = AC = \frac{3}{2} b$. Since, $AE$ is an altitude from $A$ to $CH$ of an isosceles triangle, $HE$ must be equal to $EC$. Since $DH = a$ and $DC = c$, we can solve to get that $DE = \frac{c-a}{2}$ and $EC = \frac{a+c}{2}$.

We must then set up equations using the Pythagorean Theorem, writing everything in terms of $a$, $b$, and $c$. Looking at right triangle $AEC$ we get \[324 + \frac{(a + c)^2}{4} = \frac{9}{4} b^2\] Looking at right triangle $AED$ we get \[b^2 - 324 = \frac{(c-a)^2}{4}\] Now rearranging and solving, we get two equation \[a+c = 3\sqrt{b^2 - 144}\] \[c - a = 2\sqrt{b^2 - 324}\] Those are convenient equations as $c+a - (c-a) = 2a = \frac{5}{3} b$ which gives us \[3\sqrt{b^2 - 324} - 2\sqrt{b^2 - 324} = \frac{5}{3} b\] After some "smart" calculation, we get that $b = \frac{27}{\sqrt{2}}$.

Notice that the question asks for $K\sqrt{2}$, and $K = \frac{1}{2} \cdot 18 \cdot (a+c)$ by applying the trapezoid area formula. Fortunately, this is just $27\sqrt{b^2 - 144}$, and plugging in the value of $b = \frac{27}{\sqrt{2}}$, we get that $K\sqrt{2} = \boxed{567}$.

~Math_Genius_164

Solution 2(LOC and Trig)

Call AD and BC $a$. Draw diagonal AC and call the foot of the perpendicular from B to AC $G$. Call the foot of the perpendicular from A to line BC F, and call the foot of the perpindicular from A to DC H. Triangles CBG and CAF are similar, and we get that $\frac{10}{15}$=$\frac{a}{AC}$ Therefore, $AC=1.5a$. It then follows that triangles ABF and ADH are similar. Using similar triangles, we can then find that $AB=1.2a$. Using the Law of Cosine on ABC, We can find that the cosine of angle ABC is $-\frac{1}{3}$. Since angles ABF and ADH are equivalent and supplementary to angle ABC, we know that the cosine of angle ADH is 1/3. It then follows that $a=\frac{27\sqrt{2}}{2}$. Then it can be found that the area $K$ is $\frac{567\sqrt{2}}{2}$. Multiplying this by $\sqrt{2}$, the answer is $\boxed{567}$. -happykeeper

See also

2021 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png