Sum and difference of powers
The sum and difference of powers are powerful factoring techniques that, respectively, factor a sum or a difference of certain powers.
Contents
Sums of Odd Powers
Differences of Powers
If is a positive integer and and are real numbers,
For example:
Note that the number of terms in the long factor is equal to the exponent in the expression being factored.
An amazing thing happens when and differ by , say, . Then and
.
For example:
If we also know that then:
Sum of Cubes
Factorizations of Sums of Powers
Note that all these sums of powers can be factorized as follows:
If we have a sum of powers of degree "n", then
(x^n)±(y^n)=(x±y)(x^n+(x^(n-1))y+(x^(n-2))y^2...+y^n)
Note that the "longer" polynomial in the factorization is simply a binomial theorem expansion of the binomial (x+y)^n, except for the fact that the coefficient on each of the terms is 1. This can be quite useful in problems that might have a sum of powers expression as well as an application of the binomial theorem.
- icecreamrolls8
See Also
- Factoring
- Difference of squares, an extremely common specific case of this.
- Binomial Theorem
This article is a stub. Help us out by expanding it.