2020 AMC 8 Problems/Problem 20

Revision as of 22:02, 9 December 2020 by Sugar rush (talk | contribs)

Problem

Let $a_{1}, a_{2}, a_{3}, a_{4},$ and $a_{5}$ be five positive integers such that $a_{2}=11$ and $\frac{a_{i}}{a_{i+1}}\in\{\frac{1}{2}, 2\}$ for $1\leq n\leq 4$. If $\{\frac{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}}{5}\}=0.2$, compute $\frac{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}}{5}$.

Note: $\{x\}$ denotes the fractional part of $x$.

$\textbf{(A) }22.2 \qquad \textbf{(B) }24.2 \qquad \textbf{(C) }33.2 \qquad \textbf{(D) }35.2 \qquad \textbf{(E) }37.2$

Solution 1

We will show that $22$, $11$, $22$, $44$, and $22$ meters are the heights of the trees from left to right. We are given that all tree heights are integers, so since Tree 2 has height $11$ meters, we can deduce that Trees 1 and 3 both have a height of $22$ meters. There are now three possible cases for the heights of Trees 4 and 5 (in order for them to be integers), namely heights of $11$ and $22$, $44$ and $88$, or $44$ and $22$. Checking each of these, in the first case, the average is $17.6$ meters, which doesn't end in $.2$ as the problem requires. Therefore, we consider the other cases. With $44$ and $88$, the average is $37.4$ meters, which again does not end in $.2$, but with $44$ and $22$, the average is $24.2$ meters, which does. Consequently, the answer is $\boxed{\textbf{(B) }24.2}$.

Solution 2

Notice the average height of the trees ends with $0.2$ therefore the sum of all five heights of the trees must end with $1$. ($0.2$ * $5$ = $1$) We already know Tree $2$ is $11$ meters tall. Both Tree $1$ and Tree $3$ must $22$ meters tall - since neither can be $5.5$. Once again, apply our observation for solving for the Tree $4$'s height. Tree $4$ can't be $11$ meters for the sum of the five tree heights to still end with $1$. Therefore, the Tree $4$ is $44$ meters tall. Now the Tree $5$ can either be $22$ or $88$. Find the average height for both cases of Tree $5$. Doing this, we realize the Tree $5$ must be $22$ for the average height to end with $0.2$ and that the average height is $\boxed{\textbf{(B) }24.2}$.

Solution 3

As in Solution 1, we shall show that the heights of the trees are $22$, $11$, $22$, $44$, and $22$ meters. Let $S$ be the sum of the heights, so that the average height will be $\frac{S}{5}$ meters. We note that $0.2 = \frac{1}{5}$, so in order for $\frac{S}{5}$ to end in $.2$, $S$ must be one more than a multiple of $5$. Moreover, as all the heights are integers, the heights of Tree 1 and Tree 3 are both $22$ meters. At this point, our table looks as follows: \[\begingroup \setlength{\tabcolsep}{10pt} \renewcommand{\arraystretch}{1.5} \begin{tabular}{|c|c|} \hline Tree 1 & 22 meters \\ Tree 2 & 11 meters \\ Tree 3 & 22 meters \\ Tree 4 & \rule{0.5cm}{0.15mm} meters \\ Tree 5 & \rule{0.5cm}{0.15mm} meters \\ \hline Average height & \rule{0.5cm}{0.15mm}\text{ .}2 meters \\ \hline \end{tabular} \endgroup\]

If Tree 4 now has a height of $11$, then Tree 5 would need to have height $22$, but in that case $S$ would equal $88$, which is not $1$ more than a multiple of $5$. So we instead take Tree 4 to have height $44$. Then the sum of the heights of the first 4 trees is $22+11+22+44 = 99$, so using a height of $22$ for Tree 5 gives $S=121$, which is $1$ more than a multiple of $5$ (whereas $88$ gives $S = 187$, which is not). Thus the average height of the trees is $\frac{121}{5} = \boxed{\textbf{(B) }24.2}$ meters.

Video Solution

https://youtu.be/VnOecUiP-SA

See also

2020 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png