1999 AIME Problems/Problem 1
Problem
Find the smallest prime that is the fifth term of an increasing arithmetic sequence, all four preceding terms also being prime.
Solution
Obviously, all of the terms must be odd. The common difference between the terms cannot be or , since otherwise there would be a number in the sequence that is divisible by . However, if the common difference is , we find that , and form an arithmetic sequence. Thus, the answer is .
See also
1999 AIME (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |