Georgeooga-Harryooga Theorem

Revision as of 09:45, 18 November 2020 by Redfiretruck (talk | contribs) (Solutions)

Definition

The Georgeooga-Harryooga Theorem states that if you have $a$ distinguishable objects and $b$ of them cannot be together, then there are $\frac{(a-b)!(a-b+1)!}{(a-2b+1)!}$ ways to arrange the objects.


Created by George and Harry of The Ooga Booga Tribe of The Caveman Society

Proofs

Proof 1

Let our group of $a$ objects be represented like so $1$, $2$, $3$, ..., $a-1$, $a$. Let the last $b$ objects be the ones we can't have together.

Then we can organize our objects like so $\square1\square2\square3\square...\square a-b-1\square a-b\square$.

We have $(a-b)!$ ways to arrange the objects in that list.

Now we have $a-b+1$ blanks and $b$ other objects so we have $_{a-b+1}P_{b}=\frac{(a-b+1)!}{(a-2b+1)!}$ ways to arrange the objects we can't put together.

By fundamental counting principal our answer is $\frac{(a-b)!(a-b+1)!}{(a-2b+1)!}$.


Proof by RedFireTruck

Applications

Application 1

Problem

Zara has a collection of $4$ marbles: an Aggie, a Bumblebee, a Steelie, and a Tiger. She wants to display them in a row on a shelf, but does not want to put the Steelie and the Tiger next to one another. In how many ways can she do this?

$\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$

(Source 2020 AMC 8 Problems/Problem 10)

Solutions

Solution 1

By the Georgeooga-Harryooga Theorem there are $\frac{(4-2)!(4-2+1)!}{(4-2\cdot2+1)!}=\boxed{\textbf{(C) }12}$ way to arrange the marbles.