2020 USOJMO Problems/Problem 6

Revision as of 18:16, 6 October 2023 by Eevee9406 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $n \geq 2$ be an integer. Let $P(x_1, x_2, \ldots, x_n)$ be a nonconstant $n$-variable polynomial with real coefficients. Assume that whenever $r_1, r_2, \ldots , r_n$ are real numbers, at least two of which are equal, we have $P(r_1, r_2, \ldots , r_n) = 0$. Prove that $P(x_1, x_2, \ldots, x_n)$ cannot be written as the sum of fewer than $n!$ monomials. (A monomial is a polynomial of the form $cx^{d_1}_1 x^{d_2}_2\ldots x^{d_n}_n$, where $c$ is a nonzero real number and $d_1$, $d_2$, $\ldots$, $d_n$ are nonnegative integers.)

See Also

2020 USAJMO (ProblemsResources)
Preceded by
Problem 5
Followed by
Last Problem
1 2 3 4 5 6
All USAJMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png