1967 IMO Problems/Problem 5

Revision as of 21:57, 1 August 2020 by Catoptrics (talk | contribs) (Fixed problem and provided solution.)

Let $a_1,\ldots,a_8$ be reals, not all equal to zero. Let \[c_n = \sum^8_{k=1} a^n_k\] for $n=1,2,3,\ldots$. Given that among the numbers of the sequence $(c_n)$, there are infinitely many equal to zero, determine all the values of $n$ for which $c_n = 0.$

Solution

It can be found here [1]