1999 AIME Problems/Problem 13

Revision as of 18:26, 14 October 2007 by 1=2 (talk | contribs) (See also)

Problem

Forty teams play a tournament in which every team plays every other team exactly once. No ties occur, and each team has a $\displaystyle 50 \%$ chance of winning any game it plays. The probability that no two teams win the same number of games is $\displaystyle m/n,$ where $\displaystyle m_{}$ and $\displaystyle n_{}$ are relatively prime positive integers. Find $\displaystyle \log_2 n.$

Solution

See also

1999 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions