2010 AIME II Problems/Problem 1

Revision as of 11:54, 28 October 2021 by Victorheyoutube (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $N$ be the greatest integer multiple of $36$ all of whose digits are even and no two of whose digits are the same. Find the remainder when $N$ is divided by $1000$.

Solution

If an integer is divisible by $36$, it must also be divisible by $9$ since $9$ is a factor of $36$. It is a well-known fact that, if $N$ is divisible by $9$, the sum of the digits of $N$ is a multiple of $9$. Hence, if $N$ contains all the even digits, the sum of the digits would be $0 + 2 + 4 + 6 + 8 = 20$, which is not divisible by $9$ and thus $36$. The next logical try would be $8640$, which happens to be divisible by $36$. Thus, $N = 8640 \equiv \boxed{640} \pmod {1000}$.


Video Solution

https://www.youtube.com/watch?v=TVlHqIgMEVQ

See also

2010 AIME II (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png