2020 AMC 10A Problems/Problem 17

Revision as of 21:05, 31 January 2020 by Pcchess (talk | contribs)

Define\[P(x) =(x-1^2)(x-2^2)\cdots(x-100^2).\]How many integers $n$ are there such that $P(n)\leq 0$?

$\textbf{(A) } 4900 \qquad \textbf{(B) } 4950\qquad \textbf{(C) } 5000\qquad \textbf{(D) } 5050 \qquad \textbf{(E) } 5100$

Solution

Notice that $P(x)$ is a product of many integers. We either need one factor to be 0 or an odd number of negative factors. Case 1: There are 100 integers $n$ for which $P(x)=0 Case 2: For there to be an odd number of negative factors,$n$must be between an odd number squared and an even number squared. This means that there are$2+6+\dots+10$total possible values of$n$. Simplifying, there are$5000$possible numbers.

Summing, there are$ (Error compiling LaTeX. Unknown error_msg)\boxed{\textbf{(E) }} 5100$total possible values of$n$.


See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png