1996 USAMO Problems/Problem 3
Problem
Let be a triangle. Prove that there is a line (in the plane of triangle ) such that the intersection of the interior of triangle and the interior of its reflection in has area more than the area of triangle .
Solution
Let the triangle be . Assume is the largest angle. Let be the altitude. Assume , so that . If , then reflect in . If is the reflection of , then and the intersection of the two triangles is just . But , so has more than the area of .
If , then reflect in the angle bisector of . The reflection of is a point on the segment and not . (It lies on the line because we are reflecting in the angle bisector. because $∠CAD < ∠CDA = 90^{\circ}$ (Error compiling LaTeX. Unknown error_msg). Finally, because we assumed $∠B$ (Error compiling LaTeX. Unknown error_msg) does not exceed $∠A$ (Error compiling LaTeX. Unknown error_msg)). The intersection is just . But .
See Also
1996 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.