Mock AIME 2 Pre 2005 Problems/Problem 4

Revision as of 16:16, 4 August 2019 by Mp8148 (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $S = \{5^k | k \in \mathbb{Z}, 0 \le k \le 2004 \}$. Given that $5^{2004} = 5443 \cdots 0625$ has $1401$ digits, how many elements of $S$ begin with the digit $1$?

Solution

Note that $5^n$ has the same number of digits as $5^{n-1}$ if and only if $5^{n-1}$ has a leading digit $1$. Therefore, there are $2004 - 1401 = 603$ numbers with leading digit $1$ among the set $\{5^1, 5^2, 5^3, \cdots 5^{2003}\}.$ However, $5^0$ also starts with $1$, so the answer is $603 + 1 = \boxed{604}$.

-MP8148

See also

Mock AIME 2 Pre 2005 (Problems, Source)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15