1964 AHSME Problems/Problem 33

Revision as of 23:46, 14 June 2022 by Spook (talk | contribs) (Added diagram to solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

$P$ is a point interior to rectangle $ABCD$ and such that $PA=3$ inches, $PD=4$ inches, and $PC=5$ inches. Then $PB$, in inches, equals:

$\textbf{(A) }2\sqrt{3}\qquad\textbf{(B) }3\sqrt{2}\qquad\textbf{(C) }3\sqrt{3}\qquad\textbf{(D) }4\sqrt{2}\qquad \textbf{(E) }2$

[asy] pair A, B, C, D, P;  A = (0, 0); B = (6.5, 0); C = (6.5, 4.5); D = (0, 4.5); P = (2.5, 1.5);  draw(A--B--C--D--cycle); draw(A--P); draw(C--P); draw(D--P); draw(B--P, dashed);  label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$P$", P, S); label("$3$", midpoint(A--P), NW); label("$4$", midpoint(D--P), NE); label("$5$", midpoint(C--P), NW); [/asy]

Solution

From point $P$, create perpendiculars to all four sides, labeling them $a, b, c, d$ starting from going north and continuing clockwise. Label the length $PB$ as $x$:

[asy] unitsize(1cm); pair A, B, C, D, P, ABfoot, BCfoot, CDfoot, DAfoot;  A = (0, 0); B = (6.5, 0); C = (6.5, 4.5); D = (0, 4.5); P = (2.5, 1.5); ABfoot = (2.5, 0); BCfoot = (6.5, 1.5); CDfoot = (2.5, 4.5); DAfoot = (0, 1.5);  draw(A--B--C--D--cycle); draw(A--P); draw(C--P); draw(D--P); draw(B--P, dashed); draw(ABfoot--CDfoot); draw(DAfoot--BCfoot); draw(rightanglemark(P, CDfoot, D)); draw(rightanglemark(P, BCfoot, C)); draw(rightanglemark(P, ABfoot, B)); draw(rightanglemark(P, DAfoot, A));  label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$P$", P, 3*dir(240)); label("$3$", midpoint(A--P), NW); label("$4$", midpoint(D--P), NE); label("$5$", midpoint(C--P), NW); label("$x$", midpoint(B--P), SW); label("$a$", midpoint(P--CDfoot), E); label("$b$", midpoint(P--BCfoot), N); label("$c$", midpoint(P--ABfoot), E); label("$d$", midpoint(P--DAfoot), N); [/asy]

We have $a^2 + b^2 = 5^2$ and $c^2 + d^2 = 3^2$, leading to $a^2 + b^2 + c^2 + d^2 = 34$.

We also have $a^2 + d^2 = 4^2$ and $b^2 + c^2 = x^2$, leading to $a^2 + b^2 + c^2 + d^2 = 16 + x^2$.

Thus, $34 = 16 + x^2$, or $x = \sqrt{18} = 3\sqrt{2}$, which is option $\boxed{\textbf{(B)}}$

See Also

1964 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 32
Followed by
Problem 34
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png