2017 IMO Problems/Problem 4
Let and be different points on a circle such that is not a diameter. Let be the tangent line to at . Point is such that is the midpoint of the line segment . Point is chosen on the shorter arc of so that the circumcircle of triangle intersects at two distinct points. Let be the common point of and that is closer to . Line meets again at . Prove that the line is tangent to .
Solution
We construct inversion which maps into the circle and into Than we prove that is tangent to
Quadrungle is cyclic Quadrungle is cyclic We construct circle centered at which maps into Let Inversion with respect swap and maps into Inversion with respect maps into .