1985 AIME Problems/Problem 9
Problem
In a circle, parallel chords of lengths 2, 3, and 4 determine central angles of , , and radians, respectively, where . If , which is a positive rational number, is expressed as a fraction in lowest terms, what is the sum of its numerator and denominator?
Solution 1
All chords of a given length in a given circle subtend the same arc and therefore the same central angle. Thus, by the given, we can re-arrange our chords into a triangle with the circle as its circumcircle.
This triangle has semiperimeter so by Heron's formula it has area . The area of a given triangle with sides of length and circumradius of length is also given by the formula , so and .
Now, consider the triangle formed by two radii and the chord of length 2. This isosceles triangle has vertex angle , so by the Law of Cosines,
and the answer is .
Solution 2 (Law of cosines)
It’s easy to see that the angle opposite the side 2 is , and using the Law of Cosines, we get: Which, rearranges to: And, that gets that and using that \cos\alpha = 17/32\boxed{049}$— Alexlikemath
==Solution 3 (trig)== Using the first diagram above, <cmath>\sin \frac{\alpha}{2} = \frac{1}{r}</cmath> <cmath>\sin \frac{\beta}{2} = \frac{1.5}{r}</cmath> <cmath>\sin(\frac{\alpha}{2}+\frac{\beta}{2})=\frac{2}{r}</cmath> by the Pythagorean trig identities, <cmath>\cos\frac{\alpha}{2}=\sqrt{1-\frac{1}{r^2}}</cmath> <cmath>\cos\frac{\beta}{2}=\sqrt{1-\frac{2.25}{r^2}}</cmath> so by the composite sine identity <cmath>\frac{2}{r}=\frac{1}{r}\sqrt{1-\frac{2.25}{r^2}}+\frac{1.5}{r}\sqrt{1-\frac{1}{r^2}}</cmath> multiply both sides by$ (Error compiling LaTeX. Unknown error_msg)2r\sqrt{4-\frac{9}{r^2}}17+32=\boxed{049}$
See also
1985 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |