2019 AMC 12B Problems/Problem 25
Problem
Let be a convex quadrilateral with
and
Suppose that the centroids of
and
form the vertices of an equilateral triangle. What is the maximum possible value of
?
Solution
Set ,
,
as the centroids of
,
, and
respectively, while
is the midpoint of line
.
,
, and
are collinear due to the centroid. Likewise,
,
, and
are collinear as well. Because
and
,
. From the similar triangle ratios, we can deduce that
. The similar triangles implies parallel lines, namely
is parallel to
.
We can apply the same strategy to the pair of triangles and
. We can conclude that
is parallel to
and
. Because
,
and the pair of parallel lines preserve the 60 degree angle, meaning
. Therefore,
is equilateral.
See Also
2019 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.