Mock AIME 1 2006-2007 Problems/Problem 9
Problem
Revised statement
Let be a geometric sequence of complex numbers with and , and let denote the infinite sum . If the sum of all possible distinct values of is where and are relatively prime positive integers, compute the sum of the positive prime factors of .
Original statement
Let be a geometric sequence for with and . Let denote the infinite sum: . If the sum of all distinct values of is where and are relatively prime positive integers, then compute the sum of the positive prime factors of .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.