2019 AMC 10A Problems/Problem 24
Problem
Let , , and be the distinct roots of the polynomial . It is given that there exist real numbers , , and such that for all . What is ?
Solution
Multiplying both sides by on both sides yields As this is a polynomial and is true for infinitely many , it must be true for all . This means we can plug in to find that . Similarly, we can find and . Summing them up, we get that By Vieta's formulas, we know that and . So the answer is
(adapted from djmathman's solution)
Solution 2 (similar)
Multiplying by on both sides we find that As , notice that the and terms on the right will cancel out and we will be left with only . So, , which by L'Hospital's rule is equal to . We can do similarly for and . Adding up the reciprocals and using Vieta's formulas, we have that
See Also
2019 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.