1983 AHSME Problems/Problem 11

Revision as of 23:47, 19 February 2019 by Sevenoptimus (talk | contribs) (Fixed formatting and added box at the bottom)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 11

Simplify $\sin (x-y) \cos y + \cos (x-y) \sin y$.

$\textbf{(A)}\ 1\qquad \textbf{(B)}\ \sin x\qquad \textbf{(C)}\ \cos x\qquad \textbf{(D)}\ \sin x \cos 2y\qquad \textbf{(E)}\ \cos x\cos 2y$

Solution

By the addition formula for $\sin$, this becomes $\sin{((x-y)+y)} = \sin{x}$, so the answer is $\boxed{\textbf{(B)}}$.

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png