|
|
Line 1: |
Line 1: |
− | Let <math>S</math> be a [[partially ordered set]]. We say that <math>S</math> satisfies the '''ascending chain condition''' ('''ACC''') if every ascending chain
| |
− | <cmath> x_0 \leqslant x_1 \leqslant x_2 \leqslant \dotsc </cmath>
| |
− | eventually stabilizes; that is, there is some <math>N\ge 0</math> such that
| |
− | <math>x_n = x_N</math> for all <math>n\ge N</math>.
| |
| | | |
− | Similarly, if every descending chain
| |
− | <cmath> x_0 \geqslant x_1 \geqslant x_2 \geqslant \dotsc </cmath>
| |
− | stabilizes, we say that <math>S</math> satisfies the '''descending chain condition''' ('''DCC'''). A set <math>S</math> with an ordering <math>\leqslant</math> satisfies ACC if and only if
| |
− | its opposite ordering satisfies DCC.
| |
− |
| |
− | Every [[finite]] ordered set necessarily satisfies both ACC and
| |
− | DCC.
| |
− |
| |
− | Let <math>A</math> be a [[ring]], and let <math>M</math> be an <math>A</math>-module. If the set
| |
− | of sub-modules of <math>M</math> with the ordering of <math>M</math> satifies ACC, we
| |
− | say that <math>M</math> is [[Noetherian]]. If this set satisfies DCC, we say
| |
− | that <math>M</math> is [[Artinian]].
| |
− |
| |
− | '''Theorem.''' A partially ordered set <math>S</math> satisfies the ascending
| |
− | chain condition if and only if every subset of <math>S</math> has a
| |
− | [[maximal element]].
| |
− |
| |
− | ''Proof.'' First, suppose that every subset of <math>S</math> has a maximal
| |
− | element. Then every ascending chain in <math>S</math> has a maximal element,
| |
− | so <math>S</math> satisfies ACC.
| |
− |
| |
− | Now, suppose that some subset of <math>S</math> has no maximal element. Then
| |
− | we can recursively define elements <math>x_0, x_1, \dotsc</math> such that
| |
− | <math>x_{n+1} > x_n</math>, for all <math>n\ge 0</math>. This sequence constitutes
| |
− | an ascending chain that does not stabilize, so <math>S</math> does not
| |
− | satisfy ACC. <math>\blacksquare</math>
| |
− |
| |
− |
| |
− | {{stub}}
| |
− |
| |
− | == See also ==
| |
− |
| |
− | * [[Noetherian]]
| |
− | * [[Artinian]]
| |
− | * [[Partially ordered set]]
| |
− | * [[Zorn's Lemma]]<!-- haha-->
| |
− |
| |
− | [[Category:Set theory]]
| |
− | [[Category:Ring theory]]
| |