Difference between revisions of "1981 AHSME Problems/Problem 3"

(Solution)
(Solution)
Line 1: Line 1:
 
==Solution==
 
==Solution==
  
The least common multiple of <math>\displaystyle{\frac{1}{x}}</math>, <math>\frac{1}{2x}</math>, and <math>\frac{1}{3x}</math> is <math>\frac{1}{6x}</math>.  
+
The least common multiple of <math>{\frac{1}{x}}</math>, <math>\frac{1}{2x}</math>, and <math>\frac{1}{3x}</math> is <math>\frac{1}{6x}</math>.  
  
 
<math>\frac{1}{x}</math> = <math>\frac{6}{6x}</math>, <math>\frac{1}{2x}</math> = <math>\frac{3}{6x}</math>, <math>\frac{1}{3x}</math> = <math>\frac{2}{6x}</math>.
 
<math>\frac{1}{x}</math> = <math>\frac{6}{6x}</math>, <math>\frac{1}{2x}</math> = <math>\frac{3}{6x}</math>, <math>\frac{1}{3x}</math> = <math>\frac{2}{6x}</math>.
Line 7: Line 7:
 
<math>\frac{6}{6x}</math> + <math>\frac{3}{6x}</math> + <math>\frac{2}{6x}</math> = <math>\frac{11}{6x}</math>
 
<math>\frac{6}{6x}</math> + <math>\frac{3}{6x}</math> + <math>\frac{2}{6x}</math> = <math>\frac{11}{6x}</math>
  
The answer is (D) <math>\frac{11}{6x}</math>.
+
The answer is <cmath>\left(D\right)</cmath> <math>\frac{11}{6x}</math>.

Revision as of 15:24, 21 November 2018

Solution

The least common multiple of ${\frac{1}{x}}$, $\frac{1}{2x}$, and $\frac{1}{3x}$ is $\frac{1}{6x}$.

$\frac{1}{x}$ = $\frac{6}{6x}$, $\frac{1}{2x}$ = $\frac{3}{6x}$, $\frac{1}{3x}$ = $\frac{2}{6x}$.

$\frac{6}{6x}$ + $\frac{3}{6x}$ + $\frac{2}{6x}$ = $\frac{11}{6x}$

The answer is \[\left(D\right)\] $\frac{11}{6x}$.