Difference between revisions of "1981 AHSME Problems/Problem 3"
(→Solution) |
(→Solution) |
||
Line 1: | Line 1: | ||
==Solution== | ==Solution== | ||
− | The least common multiple of <math>\frac{1}{x}</math>, <math>\frac{1}{2x}</math>, and <math>\frac{1}{3x}</math> is <math>\frac{1}{6x}</math>. | + | The least common multiple of <math>\displaystyle{\frac{1}{x}}</math>, <math>\frac{1}{2x}</math>, and <math>\frac{1}{3x}</math> is <math>\frac{1}{6x}</math>. |
<math>\frac{1}{x}</math> = <math>\frac{6}{6x}</math>, <math>\frac{1}{2x}</math> = <math>\frac{3}{6x}</math>, <math>\frac{1}{3x}</math> = <math>\frac{2}{6x}</math>. | <math>\frac{1}{x}</math> = <math>\frac{6}{6x}</math>, <math>\frac{1}{2x}</math> = <math>\frac{3}{6x}</math>, <math>\frac{1}{3x}</math> = <math>\frac{2}{6x}</math>. |
Revision as of 15:08, 21 November 2018
Solution
The least common multiple of , , and is .
= , = , = .
+ + =
The answer is (D) .