Difference between revisions of "2007 AMC 12A Problems/Problem 22"
Ultranitedu (talk | contribs) m (→Solution 2) |
Futureimo42 (talk | contribs) (→Solution) |
||
Line 62: | Line 62: | ||
We'll find out that out of the 9 cases, in 4 the value <math>n_{?}</math> has the correct sum of digits. <br/> | We'll find out that out of the 9 cases, in 4 the value <math>n_{?}</math> has the correct sum of digits. <br/> | ||
This happens for <math>n_{?}\in \{ 1977, 1980, 1983, 2001 \}</math>. | This happens for <math>n_{?}\in \{ 1977, 1980, 1983, 2001 \}</math>. | ||
+ | |||
+ | ===Solution 4=== | ||
+ | *This solution is not a good solution, but is viable for in contest situations* | ||
+ | Clearly <math>n\equiv S(n) \pmod 9</math>. Thus, <cmath>n+S(n)+S(S(n))\equiv 0 \pmod 9 \implies n\equiv 0\pmod 3.</cmath> | ||
+ | Now we need a bound for <math>n</math>. It is clear that the maximum for <math>S(n)=36</math> (from <math>n=9999</math>) which means the maximum for <math>S(n)+S(S(n))</math> is <math>45</math>. This means that <math>n\geq 1962</math>. | ||
+ | *Warning: This is where you will cringe* | ||
+ | Now check all multiples of <math>3</math> from <math>1962</math> to <math>2007</math> and we find that only <math>n=1977, 1980, 1983, 2001</math> work, so our answer is <math>\mathrm{(D)}\ 4</math>. | ||
+ | |||
+ | Remark: this may seem time consuming, but in reality, calculating <math>n+S(n)+S(S(n))</math> for <math>16</math> values is actually very quick, and this solution would take up around 3-5 minutes in contest, which isn't bad for a problem 22. | ||
== See also == | == See also == |
Revision as of 14:29, 6 November 2018
- The following problem is from both the 2007 AMC 12A #22 and 2007 AMC 10A #25, so both problems redirect to this page.
Problem
For each positive integer , let denote the sum of the digits of For how many values of is
Contents
Solution
Solution 1
For the sake of notation let . Obviously . Then the maximum value of is when , and the sum becomes . So the minimum bound is . We do casework upon the tens digit:
Case 1: . Easy to directly disprove.
Case 2: . , and if and otherwise.
- Subcase a: . This exceeds our bounds, so no solution here.
- Subcase b: . First solution.
Case 3: . , and if and otherwise.
- Subcase a: . Second solution.
- Subcase b: . Third solution.
Case 4: . But , and clearly sum to .
Case 5: . So and (recall that ), and . Fourth solution.
In total we have solutions, which are and .
Solution 2
Clearly, . We can break this into three cases:
Case 1:
- Inspection gives .
Case 2: , (not to be confused with ),
- If you set up an equation, it reduces to
- which has as its only solution satisfying the constraints , .
Case 3: , ,
- This reduces to
- . The only two solutions satisfying the constraints for this equation are , and , .
The solutions are thus and the answer is .
Solution 3
As in Solution 1, we note that and .
Obviously, .
As , this means that , or equivalently that .
Thus . For each possible we get three possible .
(E. g., if , then is a number such that and , therefore .)
For each of these nine possibilities we compute as and check whether .
We'll find out that out of the 9 cases, in 4 the value has the correct sum of digits.
This happens for .
Solution 4
- This solution is not a good solution, but is viable for in contest situations*
Clearly . Thus, Now we need a bound for . It is clear that the maximum for (from ) which means the maximum for is . This means that .
- Warning: This is where you will cringe*
Now check all multiples of from to and we find that only work, so our answer is .
Remark: this may seem time consuming, but in reality, calculating for values is actually very quick, and this solution would take up around 3-5 minutes in contest, which isn't bad for a problem 22.
See also
2007 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2007 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.