Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 5"
m |
|||
Line 2: | Line 2: | ||
Given that <math>\displaystyle iz^2=1+\frac 2z + \frac{3}{z^2}+\frac{4}{z ^3}+\frac{5}{z^4}+\cdots</math> and <math>\displaystyle z=n\pm \sqrt{-i},</math> find <math>\displaystyle \lfloor 100n \rfloor.</math> | Given that <math>\displaystyle iz^2=1+\frac 2z + \frac{3}{z^2}+\frac{4}{z ^3}+\frac{5}{z^4}+\cdots</math> and <math>\displaystyle z=n\pm \sqrt{-i},</math> find <math>\displaystyle \lfloor 100n \rfloor.</math> | ||
+ | |||
+ | ==Solution== | ||
+ | {{solution}} | ||
+ | |||
+ | ---- | ||
+ | |||
+ | *[[Mock AIME 2 2006-2007/Problem 4 | Previous Problem]] | ||
+ | |||
+ | *[[Mock AIME 2 2006-2007/Problem 6 | Next Problem]] | ||
+ | |||
+ | *[[Mock AIME 2 2006-2007]] |
Revision as of 18:47, 22 August 2006
Problem
Given that and find
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.