Difference between revisions of "2017 AMC 10B Problems/Problem 4"
Rockmanex3 (talk | contribs) (→See Also) |
|||
Line 12: | Line 12: | ||
===Solution 2=== | ===Solution 2=== | ||
Substituting each <math>x</math> and <math>y</math> with <math>1</math>, we see that the given equation holds true, as <math>\frac{3(1)+1}{1-3(1)} = -2</math>. Thus, <math>\frac{x+3y}{3x-y}=\boxed{\textbf{(D)}\ 2}</math> | Substituting each <math>x</math> and <math>y</math> with <math>1</math>, we see that the given equation holds true, as <math>\frac{3(1)+1}{1-3(1)} = -2</math>. Thus, <math>\frac{x+3y}{3x-y}=\boxed{\textbf{(D)}\ 2}</math> | ||
+ | |||
+ | ===Solution 3=== | ||
+ | Let <math>y=ax</math>. The first equation converts into <math>\frac{(3+a)x}{(a-3a)x}=-2</math>. After a bit of algebra we found out that <math>a=1</math>, which means <math>x=y</math>. Substituting <math>x=y</math> into the second equation it becomes <math>\frac{4x}{2x}=\boxed{\textbf{(D)}\ 2}</math> - mathleticguyyy | ||
==See Also== | ==See Also== |
Revision as of 19:35, 15 September 2018
Problem
Supposed that and are nonzero real numbers such that . What is the value of ?
Solutions
Solution 1
Rearranging, we find , or . Substituting, we can convert the second equation into .
Solution 2
Substituting each and with , we see that the given equation holds true, as . Thus,
Solution 3
Let . The first equation converts into . After a bit of algebra we found out that , which means . Substituting into the second equation it becomes - mathleticguyyy
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.