Difference between revisions of "2008 iTest Problems/Problem 100"
(Created blank page) |
|||
Line 1: | Line 1: | ||
− | + | Let <math>\alpha</math> be a root of <math>x^6-x-1</math>, and call two polynomials <math>p</math> and <math>q</math> with integer coefficients <math>\textit{equivalent}</math> if <math>p(\alpha)\equiv q(\alpha)\pmod3</math>. It is known that every such polynomial is equivalent to exactly one of <math>0,1,x,x^2,\ldots,x^{727}</math>. Find the largest integer <math>n<728</math> for which there exists a polynomial <math>p</math> such that <math>p^3-p-x^n</math> is equivalent to <math>0</math>. |
Latest revision as of 15:15, 15 August 2018
Let be a root of , and call two polynomials and with integer coefficients if . It is known that every such polynomial is equivalent to exactly one of . Find the largest integer for which there exists a polynomial such that is equivalent to .