Difference between revisions of "2001 AMC 12 Problems/Problem 24"
Diamond606 (talk | contribs) (→Solution 1) |
Diamond606 (talk | contribs) (→Solution 2) |
||
Line 55: | Line 55: | ||
Draw a good diagram! Now, let's call <math>BD=t</math>, so <math>DC=2t</math>. Given the rather nice angles of <math>\angle ABD = 45^\circ</math> and <math>\angle ADC = 60^\circ</math> as you can see, let's do trig. Drop an altitude from <math>A</math> to <math>BC</math>; call this point <math>H</math>. We realize that there is no specific factor of <math>t</math> we can call this just yet, so let <math>AH=kt</math>. Notice that in <math>\triangle{ABH}</math> we get <math>BH=kt</math>. Using the 60-degree angle in <math>\triangle{ADH}</math>, we obtain <math>DH=\frac{\sqrt{3}}{3}kt</math>. The comparable ratio is that <math>BH-DH=t</math>. If we involve our <math>k</math>, we get: | Draw a good diagram! Now, let's call <math>BD=t</math>, so <math>DC=2t</math>. Given the rather nice angles of <math>\angle ABD = 45^\circ</math> and <math>\angle ADC = 60^\circ</math> as you can see, let's do trig. Drop an altitude from <math>A</math> to <math>BC</math>; call this point <math>H</math>. We realize that there is no specific factor of <math>t</math> we can call this just yet, so let <math>AH=kt</math>. Notice that in <math>\triangle{ABH}</math> we get <math>BH=kt</math>. Using the 60-degree angle in <math>\triangle{ADH}</math>, we obtain <math>DH=\frac{\sqrt{3}}{3}kt</math>. The comparable ratio is that <math>BH-DH=t</math>. If we involve our <math>k</math>, we get: | ||
− | <math>kt(\frac{3}{3}-\frac{\sqrt{3}}{3})=t</math>. Eliminating <math>t</math> and removing radicals from the denominator, we get <math>k=\frac{3+\sqrt{3}}{2}</math>. From there, one can easily obtain <math>HC=3t-kt=\frac{3-\sqrt{3}}{2}t</math>. Now we finally have a desired ratio. Since <math>tan\angle ACH = 2+\sqrt{3}</math> upon calculation, we know that <math>\angle ACH</math> can be simplified. Indeed, if you know that <math>arctan(75)=2+\sqrt{3}</math> or even take a minute or two to work out the sine and cosine using <math>sin(x)^2+cos(x)^2=1</math>, and perhaps the half- or double-angle formulas, you get <math>\boxed{75^\circ}</math>. | + | <math>kt(\frac{3}{3}-\frac{\sqrt{3}}{3})=t</math>. Eliminating <math>t</math> and removing radicals from the denominator, we get <math>k=\frac{3+\sqrt{3}}{2}</math>. From there, one can easily obtain <math>HC=3t-kt=\frac{3-\sqrt{3}}{2}t</math>. Now we finally have a desired ratio. Since <math>\tan\angle ACH = 2+\sqrt{3}</math> upon calculation, we know that <math>\angle ACH</math> can be simplified. Indeed, if you know that <math>\arctan(75)=2+\sqrt{3}</math> or even take a minute or two to work out the sine and cosine using <math>\sin(x)^2+\cos(x)^2=1</math>, and perhaps the half- or double-angle formulas, you get <math>\boxed{75^\circ}</math>. |
== Solution 3== | == Solution 3== |
Revision as of 16:40, 10 August 2018
Problem
In , . Point is on so that and . Find .
Solution 1
We start with the observation that , and .
We can draw the height from onto . In the triangle , we have . Hence .
By the definition of , we also have , therefore . This means that the triangle is isosceles, and as , we must have .
Then we compute , thus and the triangle is isosceles as well. Hence .
Now we can note that , hence also the triangle is isosceles and we have .
Combining the previous two observations we get that , and as , this means that .
Finally, we get .
Solution 2
Draw a good diagram! Now, let's call , so . Given the rather nice angles of and as you can see, let's do trig. Drop an altitude from to ; call this point . We realize that there is no specific factor of we can call this just yet, so let . Notice that in we get . Using the 60-degree angle in , we obtain . The comparable ratio is that . If we involve our , we get:
. Eliminating and removing radicals from the denominator, we get . From there, one can easily obtain . Now we finally have a desired ratio. Since upon calculation, we know that can be simplified. Indeed, if you know that or even take a minute or two to work out the sine and cosine using , and perhaps the half- or double-angle formulas, you get .
Solution 3
WLOG, we can assume that and . As above, we are able to find that and .
Using Law of Sines on triangle , we find that . Since we know that , , and , we can compute to equal and to be .
Next, we apply Law of Cosines to triangle to see that . Simplifying the RHS, we get , so .
Now, we apply Law of Sines to triangle to see that . After rearranging and noting that , we get .
Dividing the RHS through by , we see that , so is either or . Since is not a choice, we know .
Note that we can also confirm that by computing with Law of Sines.
See Also
2001 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.