Difference between revisions of "Mock AIME 1 2006-2007 Problems/Problem 3"

m
Line 1: Line 1:
3. Let <math>\triangle ABC</math> have <math>BC=\sqrt{7}</math>, <math>CA=1</math>, and <math>AB=3</math>. If <math>\angle A=\frac{\pi}{n}</math> where <math>n</math> is an integer, find the remainder when <math>n^{2007}</math> is divided by <math>1000</math>.
+
Let <math>\triangle ABC</math> have <math>BC=\sqrt{7}</math>, <math>CA=1</math>, and <math>AB=3</math>. If <math>\angle A=\frac{\pi}{n}</math> where <math>n</math> is an integer, find the remainder when <math>n^{2007}</math> is divided by <math>1000</math>.
  
[[Mock AIME 1 2006-2007]]
+
==Solution==
 +
{{solution}}
 +
 
 +
----
 +
 
 +
*[[Mock AIME 1 2006-2007/Problem 2 | Previous Problem]]
 +
 
 +
*[[Mock AIME 1 2006-2007/Problem 4 | Next Problem]]
 +
 
 +
*[[Mock AIME 1 2006-2007]]

Revision as of 16:26, 17 August 2006

Let $\triangle ABC$ have $BC=\sqrt{7}$, $CA=1$, and $AB=3$. If $\angle A=\frac{\pi}{n}$ where $n$ is an integer, find the remainder when $n^{2007}$ is divided by $1000$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.