Difference between revisions of "2000 AIME I Problems/Problem 7"
Flyhawkeye (talk | contribs) (Added Solution) |
Flyhawkeye (talk | contribs) m (→Solution 3) |
||
Line 38: | Line 38: | ||
Thus <math>145r = 36+r \Rightarrow 144r = 36 \Rightarrow r = \frac{36}{144} = \frac{1}{4}</math>. So <math>m + n = 1 + 4 = \boxed{5}</math>. | Thus <math>145r = 36+r \Rightarrow 144r = 36 \Rightarrow r = \frac{36}{144} = \frac{1}{4}</math>. So <math>m + n = 1 + 4 = \boxed{5}</math>. | ||
− | === Solution | + | === Solution 3 === |
Since <math>x+(1/z)=5, 1=z(5-x)=xyz</math>, so <math>5-x=xy</math>. Also, <math>y=29-(1/x)</math> by the second equation. Substitution gives <math>x=1/5</math>, <math>y=24</math>, and <math>z=5/24</math>, so the answer is 4+1 which is equal to <math>5</math>. | Since <math>x+(1/z)=5, 1=z(5-x)=xyz</math>, so <math>5-x=xy</math>. Also, <math>y=29-(1/x)</math> by the second equation. Substitution gives <math>x=1/5</math>, <math>y=24</math>, and <math>z=5/24</math>, so the answer is 4+1 which is equal to <math>5</math>. |
Revision as of 10:24, 21 July 2018
Problem
Suppose that and are three positive numbers that satisfy the equations and Then where and are relatively prime positive integers. Find .
Solution 1
We can rewrite as .
Substituting into one of the given equations, we have
We can substitute back into to obtain
We can then substitute once again to get Thus, , so .
Solution 2
Let .
Thus . So .
Solution 3
Since , so . Also, by the second equation. Substitution gives , , and , so the answer is 4+1 which is equal to .
See also
2000 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.