Difference between revisions of "1983 AHSME Problems/Problem 28"
(Created page with "Clearly since <math>[DBEF] = [ABE]</math> it follows that <math>[ADF] = [AFE]</math>. This implies that <math>AC \parallel DE</math> and so <math>\frac{AD}{DB} = \frac{CE}{EB}...") |
(Added question, made the solution a bit clearer.) |
||
Line 1: | Line 1: | ||
− | Clearly since <math>[DBEF] = [ABE]</math> it follows that <math>[ADF] = [AFE]</math>. This implies that <math>AC \parallel DE</math> and so <math>\frac{ | + | == Problem 28 == |
+ | |||
+ | Triangle <math>\triangle ABC</math> in the figure has area <math>10</math>. Points <math>D, E</math> and <math>F</math>, all distinct from <math>A, B</math> and <math>C</math>, | ||
+ | are on sides <math>AB, BC</math> and <math>CA</math> respectively, and <math>AD = 2, DB = 3</math>. If triangle <math>\triangle ABE</math> and quadrilateral <math>DBEF</math> | ||
+ | have equal areas, then that area is | ||
+ | |||
+ | <asy> | ||
+ | defaultpen(linewidth(0.7)+fontsize(10)); | ||
+ | pair A=origin, B=(10,0), C=(8,7), F=7*dir(A--C), E=(10,0)+4*dir(B--C), D=4*dir(A--B); | ||
+ | draw(A--B--C--A--E--F--D); | ||
+ | pair point=incenter(A,B,C); | ||
+ | label("$A$", A, dir(point--A)); | ||
+ | label("$B$", B, dir(point--B)); | ||
+ | label("$C$", C, dir(point--C)); | ||
+ | label("$D$", D, dir(point--D)); | ||
+ | label("$E$", E, dir(point--E)); | ||
+ | label("$F$", F, dir(point--F)); | ||
+ | label("$2$", (2,0), S); | ||
+ | label("$3$", (7,0), S);</asy> | ||
+ | |||
+ | <math>\textbf{(A)}\ 4\qquad | ||
+ | \textbf{(B)}\ 5\qquad | ||
+ | \textbf{(C)}\ 6\qquad | ||
+ | \textbf{(D)}\ \frac{5}{3}\sqrt{10}\qquad | ||
+ | \textbf{(E)}\ \text{not uniquely determined} </math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | Clearly since <math>[DBEF] = [ABE]</math> it follows that <math>[ADF] = [AFE]</math>. This implies that <math>AC \parallel DE</math> and so <math>\frac{BE}{BC} = \frac{BD}{DA} = \frac{3}{5}</math>. Since <math>\triangle ABE</math> and <math>\triangle ABC</math> have the same height, <math>[ABE] = \frac{3}{5} \cdot [ABC]=\frac{3}{5}\cdot 10 = 6</math>, hence our answer is <math>\fbox{C}</math> |
Revision as of 02:07, 9 July 2018
Problem 28
Triangle in the figure has area . Points and , all distinct from and , are on sides and respectively, and . If triangle and quadrilateral have equal areas, then that area is
Solution
Clearly since it follows that . This implies that and so . Since and have the same height, , hence our answer is