Difference between revisions of "2011 AMC 10A Problems/Problem 16"
m (→Solution 3 (FASTER!)) |
m |
||
Line 12: | Line 12: | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | == Solution 2 == | + | == Solution 2 (FASTER!) == |
+ | We can change the insides of the square root into a perfect square and then simplify. | ||
+ | |||
+ | <cmath>\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}</cmath> | ||
+ | <cmath>= \sqrt{6-6\sqrt{2}+3}+\sqrt{6+6\sqrt{2}+3}</cmath> | ||
+ | <cmath>= \sqrt{\left(\sqrt{6}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{3}\right)^2}</cmath> | ||
+ | <cmath>= \sqrt{6}-\sqrt{3}+\sqrt{6}+\sqrt{3}</cmath> | ||
+ | <cmath>= \boxed{B) 2\sqrt{6}}</cmath> | ||
+ | |||
+ | -----will3145 | ||
+ | |||
+ | == Solution 3 == | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
&\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}\\ = \ &\sqrt{\left(\sqrt{81-38}+\sqrt{81+38}\right)}\\ = \ &\sqrt{\left(\sqrt{162}\right}\\ = \ &\sqrt{\left(\sqrt{(3^4)*2\right} = \ &\boxed{2\sqrt{6} \ \mathbf{(B)}}. | &\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}\\ = \ &\sqrt{\left(\sqrt{81-38}+\sqrt{81+38}\right)}\\ = \ &\sqrt{\left(\sqrt{162}\right}\\ = \ &\sqrt{\left(\sqrt{(3^4)*2\right} = \ &\boxed{2\sqrt{6} \ \mathbf{(B)}}. | ||
Line 21: | Line 32: | ||
Thx ------ SuperWill | Thx ------ SuperWill | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== See Also == | == See Also == |
Revision as of 20:16, 8 July 2018
Problem 16
Which of the following is equal to ?
Solution 1
We find the answer by squaring, then square rooting the expression.
Solution 2 (FASTER!)
We can change the insides of the square root into a perfect square and then simplify.
will3145
Solution 3
\begin{align*} &\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}\\ = \ &\sqrt{\left(\sqrt{81-38}+\sqrt{81+38}\right)}\\ = \ &\sqrt{\left(\sqrt{162}\right}\\ = \ &\sqrt{\left(\sqrt{(3^4)*2\right} = \ &\boxed{2\sqrt{6} \ \mathbf{(B)}}. \end{align*} (Error compiling LaTeX. Unknown error_msg)
(Basically, this method turns the question into a 4th root and then simplifies it. By the way, this method is much easier.) Request from the author: Can someone help fix the coding? Thx ------ SuperWill
See Also
2011 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.