Difference between revisions of "1993 AIME Problems/Problem 4"
(→Solution 3) |
(→Solution 4) |
||
Line 44: | Line 44: | ||
===Solution 4=== | ===Solution 4=== | ||
− | Add the two conditions together to get <math>a+d+ad+93=b+c+bc</math>. Rearranging and factorising with SFFT, <math>(a+1)(d+1)+93=(b+1)(c+1)</math>. This implies that for every quadruple <math>(a,b,c,d)</math>, we | + | Add the two conditions together to get <math>a+d+ad+93=b+c+bc</math>. Rearranging and factorising with SFFT, <math>(a+1)(d+1)+93=(b+1)(c+1)</math>. This implies that for every quadruple <math>(a,b,c,d)</math>, we can replace <math>a\longrightarrow a+1</math>, <math>b\longrightarrow b+1</math>, etc. and this will still produce a valid quadruple. This means, that we can fix <math>a=1</math>, and then just repeatedly add <math>1</math> to get the other quadruples. |
Now, our conditions are <math>b+c=d+1</math> and <math>bc=d+93</math>. Replacing <math>d</math> in the first equation, we get <math>bc-b-c=92</math>. Factorising again with SFFT gives <math>(b-1)(c-1)=93</math>. Since <math>b<c</math>, we have two possible cases to consider. | Now, our conditions are <math>b+c=d+1</math> and <math>bc=d+93</math>. Replacing <math>d</math> in the first equation, we get <math>bc-b-c=92</math>. Factorising again with SFFT gives <math>(b-1)(c-1)=93</math>. Since <math>b<c</math>, we have two possible cases to consider. |
Revision as of 03:02, 4 July 2018
Problem
How many ordered four-tuples of integers with
satisfy
and
?
Contents
Solution
Solution 1
Let so
. It follows that
. Hence
.
Solve them in tems of to get
. The last two solutions don't follow
, so we only need to consider the first two solutions.
The first solution gives us and
, and the second one gives us
.
So the total number of such four-tuples is .
Solution 2
Let and
. From
,
.
Substituting ,
, and
into
,
Hence,
or
.
For , we know that
, so there are
four-tuples. For
,
, and there are
four-tuples. In total, we have
four-tuples.
Solution 3
Square both sides of the first equation in order to get and
terms, which we can plug
in for.
We can plug in for
to get
on the left side, and also observe that
after rearranging the first equation. Plug in
for
.
Now observe the possible factors of , which are
.
and
must be factors of
, and
must be greater than
.
work, and yields
possible solutions.
does not work, because if
, then
must differ by 2 as well, but an odd number
can only result from two numbers of different parity.
will be even, and
will be even, so
must be even.
works, and yields
possible solutions, while
fails for the same reasoning above.
Thus, the answer is
Solution 4
Add the two conditions together to get . Rearranging and factorising with SFFT,
. This implies that for every quadruple
, we can replace
,
, etc. and this will still produce a valid quadruple. This means, that we can fix
, and then just repeatedly add
to get the other quadruples.
Now, our conditions are and
. Replacing
in the first equation, we get
. Factorising again with SFFT gives
. Since
, we have two possible cases to consider.
Case 1: ,
. This produces the quadruple
, which indeed works.
Case 2: ,
. This produces the quadruple
, which indeed works.
Now, for case 1, we can add to each term exactly
times (until we get the quadruple
), until we violate
. This gives
quadruples for case 1.
For case 2, we can add to each term exactly
times (until we get the quadruple
). this gives
quadruples for case 2.
In conclusion, having exhausted all cases, we can finish. There are hence possible quadruples.
See also
1993 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.