Difference between revisions of "Two Tangent Theorem"
(→Proof 2) |
m |
||
Line 1: | Line 1: | ||
The two tangent theorem states that given a circle, if P is any point lying outside the circle, and if A and B are points such that PA and PB are tangent to the circle, then PA = PB. | The two tangent theorem states that given a circle, if P is any point lying outside the circle, and if A and B are points such that PA and PB are tangent to the circle, then PA = PB. | ||
− | + | <geogebra>4f007f927909b27106388aa6339add09df6868c6</geogebra> | |
== Proofs == | == Proofs == |
Revision as of 11:35, 26 June 2018
The two tangent theorem states that given a circle, if P is any point lying outside the circle, and if A and B are points such that PA and PB are tangent to the circle, then PA = PB. <geogebra>4f007f927909b27106388aa6339add09df6868c6</geogebra>
Proofs
Proof 1
Since and are both right triangles with two equal sides, the third sides are both equal.
Proof 2
From a simple application of the Power of a Point Theorem, the result follows.