Difference between revisions of "1961 AHSME Problems/Problem 40"
Rockmanex3 (talk | contribs) (→Solution 1) |
Rockmanex3 (talk | contribs) (Solution to Problem 40) |
||
Line 9: | Line 9: | ||
\textbf{(E)}\ 0 </math> | \textbf{(E)}\ 0 </math> | ||
− | ==Solutions ( | + | ==Solutions== |
+ | ===Solution 1=== | ||
+ | Let <math>x^2 + y^2 = r^2</math>, so <math>r = \sqrt{x^2 + y^2}</math>. Thus, this problem is really finding the shortest distance from the origin to the line <math>5x + 12y = 60</math>. | ||
+ | |||
+ | <asy>import graph; size(10.22 cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-5.2,xmax=13.2,ymin=-5.2,ymax=6.2; | ||
+ | pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0); | ||
+ | |||
+ | /*grid*/ pen gs=linewidth(0.7)+cqcqcq+linetype("2 2"); real gx=1,gy=1; | ||
+ | for(real i=ceil(xmin/gx)*gx;i<=floor(xmax/gx)*gx;i+=gx) draw((i,ymin)--(i,ymax),gs); for(real i=ceil(ymin/gy)*gy;i<=floor(ymax/gy)*gy;i+=gy) draw((xmin,i)--(xmax,i),gs); | ||
+ | Label laxis; laxis.p=fontsize(10); | ||
+ | xaxis(xmin,xmax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis(ymin,ymax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | |||
+ | draw((0,5)--(12,0),Arrows); | ||
+ | draw(Circle((0,0),60/13),dotted); | ||
+ | |||
+ | </asy> | ||
+ | |||
+ | From the graph, the shortest distance from the origin to the line is the [[altitude]] of the right triangle with legs <math>5</math> and <math>12</math>. The hypotenuse is <math>13</math> and the area is <math>30</math>, so the altitude is <math>\frac{60}{13}</math>, which is answer choice <math>\boxed{\textbf{(A)}}</math>. | ||
− | ===Solution | + | ===Solution 2=== |
Solve for <math>y</math> in the linear equation. | Solve for <math>y</math> in the linear equation. | ||
<cmath>12y = 60 - 5x</cmath> | <cmath>12y = 60 - 5x</cmath> | ||
Line 26: | Line 44: | ||
<cmath>\frac{60}{13}</cmath> | <cmath>\frac{60}{13}</cmath> | ||
The answer is <math>\boxed{\textbf{(A)}}</math>. | The answer is <math>\boxed{\textbf{(A)}}</math>. | ||
− | |||
− | |||
==See Also== | ==See Also== |
Revision as of 11:39, 29 May 2018
Problem 40
Find the minimum value of if .
Solutions
Solution 1
Let , so . Thus, this problem is really finding the shortest distance from the origin to the line .
From the graph, the shortest distance from the origin to the line is the altitude of the right triangle with legs and . The hypotenuse is and the area is , so the altitude is , which is answer choice .
Solution 2
Solve for in the linear equation. Substitute in . To find the minimum, find the vertex of the quadratic. The x-value of the vertex is . Thus, the minimum value is The answer is .
See Also
1961 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 26 |
Followed by Problem 28 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.