Difference between revisions of "2018 AIME II Problems/Problem 11"
Burunduchok (talk | contribs) m (→Solution) |
(→Solution) |
||
Line 3: | Line 3: | ||
Find the number of permutations of <math>1, 2, 3, 4, 5, 6</math> such that for each <math>k</math> with <math>1</math> <math>\leq</math> <math>k</math> <math>\leq</math> <math>5</math>, at least one of the first <math>k</math> terms of the permutation is greater than <math>k</math>. | Find the number of permutations of <math>1, 2, 3, 4, 5, 6</math> such that for each <math>k</math> with <math>1</math> <math>\leq</math> <math>k</math> <math>\leq</math> <math>5</math>, at least one of the first <math>k</math> terms of the permutation is greater than <math>k</math>. | ||
− | ==Solution== | + | ==Solution 1== |
If the first number is <math>6</math>, then there are no restrictions. There are <math>5!</math>, or <math>120</math> ways to place the other <math>5</math> numbers. | If the first number is <math>6</math>, then there are no restrictions. There are <math>5!</math>, or <math>120</math> ways to place the other <math>5</math> numbers. | ||
Line 73: | Line 73: | ||
− | Grand Total : <math>120 + 96 + 90 + 84 + 71 = | + | Grand Total : <math>120 + 96 + 90 + 84 + 71 = \boxed{461}</math> |
− | + | ==Solution 2== | |
− | { | + | If <math>6</math> is the first number, then there are no restrictions. There are <math>5!</math>, or <math>120</math> ways to place the other <math>5</math> numbers. |
+ | |||
+ | |||
+ | If <math>6</math> is the second number, then the first number can be <math>2, 3, 4, or 5</math>, and there are <math>4!</math> ways to place the other <math>4</math> numbers. <math>4 \cdot 4! = 96</math> ways. | ||
+ | |||
+ | |||
+ | If <math>6</math> is the third number, then we cannot have the following: | ||
+ | |||
+ | 1 _ 6 _ _ _ <math>\implies</math> 24 ways | ||
+ | |||
+ | 2 1 6 _ _ _ <math>\implies</math> 6 ways | ||
+ | |||
+ | <math>120 - 24 - 6 = 90</math> ways | ||
+ | |||
+ | If <math>6</math> is the fourth number, then we cannot have the following: | ||
+ | 1 _ _ 6 _ _ <math>\implies</math> 24 ways | ||
+ | |||
+ | 2 1 _ 6 _ _ <math>\implies</math> 6 ways | ||
+ | |||
+ | 2 3 1 6 _ _ <math>\implies</math> 2 ways | ||
+ | |||
+ | 3 1 2 6 _ _ <math>\implies</math> 2 ways | ||
+ | |||
+ | 3 2 1 6 _ _ <math>\implies</math> 2 ways | ||
+ | |||
+ | <math>120 - 24 - 6 - 2 - 2 - 2 = 84</math> ways | ||
+ | |||
+ | If <math>6</math> is the fifth number, then we cannot have the following: | ||
+ | |||
+ | _ _ _ _ 6 5 <math>\implies</math> 24 ways | ||
+ | |||
+ | 1 5 _ _ 6 _ <math>\implies</math> 6 ways | ||
+ | |||
+ | 1 _ 5 _ 6 _ <math>\implies</math> 6 ways | ||
+ | |||
+ | 2 1 5 _ 6 _ <math>\implies</math> 2 ways | ||
+ | |||
+ | 1 _ _ 5 6 _ <math>\implies</math> 6 ways | ||
+ | |||
+ | 2 1 _ 5 6 _ <math>\implies</math> 2 ways | ||
+ | |||
+ | 2 3 1 5 6 4, 3 1 2 5 6 4, 3 2 1 5 6 4 <math>\implies</math> 3 ways | ||
+ | |||
+ | <math>120 - 24 - 6 - 6 - 2 - 6 - 2 - 3 = 71</math> ways | ||
+ | |||
+ | Grand Total : <math>120 + 96 + 90 + 84 + 71 = \boxed{461}</math> |
Revision as of 15:06, 14 April 2018
Problem
Find the number of permutations of such that for each with , at least one of the first terms of the permutation is greater than .
Solution 1
If the first number is , then there are no restrictions. There are , or ways to place the other numbers.
If the first number is , can go in four places, and there are ways to place the other numbers. ways.
If the first number is , ....
4 6 _ _ _ _ 24 ways
4 _ 6 _ _ _ 24 ways
4 _ _ 6 _ _ 24 ways
4 _ _ _ 6 _ 5 must go between and , so there are ways.
ways if 4 is first.
If the first number is , ....
3 6 _ _ _ _ 24 ways
3 _ 6 _ _ _ 24 ways
3 1 _ 6 _ _ 4 ways
3 2 _ 6 _ _ 4 ways
3 4 _ 6 _ _ 6 ways
3 5 _ 6 _ _ 6 ways
3 5 _ _ 6 _ 6 ways
3 _ 5 _ 6 _ 6 ways
3 _ _ 5 6 _ 4 ways
ways
If the first number is , ....
2 6 _ _ _ _ 24 ways
2 _ 6 _ _ _ 18 ways
2 3 _ 6 _ _ 4 ways
2 4 _ 6 _ _ 4 ways
2 4 _ 6 _ _ 6 ways
2 5 _ 6 _ _ 6 ways
2 5 _ _ 6 _ 6 ways
2 _ 5 _ 6 _ 4 ways
2 4 _ 5 6 _ 2 ways
2 3 4 5 6 1 1 way
ways
Grand Total :
Solution 2
If is the first number, then there are no restrictions. There are , or ways to place the other numbers.
If is the second number, then the first number can be , and there are ways to place the other numbers. ways.
If is the third number, then we cannot have the following:
1 _ 6 _ _ _ 24 ways
2 1 6 _ _ _ 6 ways
ways
If is the fourth number, then we cannot have the following: 1 _ _ 6 _ _ 24 ways
2 1 _ 6 _ _ 6 ways
2 3 1 6 _ _ 2 ways
3 1 2 6 _ _ 2 ways
3 2 1 6 _ _ 2 ways
ways
If is the fifth number, then we cannot have the following:
_ _ _ _ 6 5 24 ways
1 5 _ _ 6 _ 6 ways
1 _ 5 _ 6 _ 6 ways
2 1 5 _ 6 _ 2 ways
1 _ _ 5 6 _ 6 ways
2 1 _ 5 6 _ 2 ways
2 3 1 5 6 4, 3 1 2 5 6 4, 3 2 1 5 6 4 3 ways
ways
Grand Total :