Difference between revisions of "1984 AIME Problems/Problem 12"

(Problem)
Line 2: Line 2:
 
<!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>A [[function]] <math>f</math> is defined for all real numbers and satisfies <math>f(2+x)=f(2-x)</math> and <math>f(7+x)=f(7-x)</math> for all <math>x</math>. If <math>x=0</math> is a root for <math>f(x)=0</math>, what is the least number of roots <math>f(x)=0</math> must have in the interval <math>-1000\leq x \leq 1000</math>?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude>
 
<!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>A [[function]] <math>f</math> is defined for all real numbers and satisfies <math>f(2+x)=f(2-x)</math> and <math>f(7+x)=f(7-x)</math> for all <math>x</math>. If <math>x=0</math> is a root for <math>f(x)=0</math>, what is the least number of roots <math>f(x)=0</math> must have in the interval <math>-1000\leq x \leq 1000</math>?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude>
  
== Solution ==
+
== Solution 1 ==
 
If <math>f(2+x)=f(2-x)</math>, then substituting <math>t=2+x</math> gives <math>f(t)=f(4-t)</math>. Similarly, <math>f(t)=f(14-t)</math>. In particular,
 
If <math>f(2+x)=f(2-x)</math>, then substituting <math>t=2+x</math> gives <math>f(t)=f(4-t)</math>. Similarly, <math>f(t)=f(14-t)</math>. In particular,
 
<cmath>f(t)=f(14-t)=f(14-(4-t))=f(t+10)</cmath>
 
<cmath>f(t)=f(14-t)=f(14-(4-t))=f(t+10)</cmath>
Line 12: Line 12:
 
In the interval <math>-1000\leq x\leq 1000</math>, there are <math>201</math> multiples of <math>10</math> and <math>200</math> numbers that are congruent to <math>4 \pmod{10}</math>, therefore the minimum number of roots is <math>\boxed{401}</math>.
 
In the interval <math>-1000\leq x\leq 1000</math>, there are <math>201</math> multiples of <math>10</math> and <math>200</math> numbers that are congruent to <math>4 \pmod{10}</math>, therefore the minimum number of roots is <math>\boxed{401}</math>.
  
 +
== Solution 2 (non-rigorous) ==
 +
We notice that the function has reflectional symmetry across both <math>x=2</math> and <math>x=7</math>. We also use the fact that <math>x=0</math> is a root. This shows that <math>x=4</math> and <math>x=14</math> are also roots. We then apply the reflection across the other axis to form <math>x=\pm 10</math> as roots. Continuing this shows that the roots are <math>0 \mod 10</math> or <math>4 \mod 10</math>. There are 200 positive roots and 200 negative roots. 0 is also a root, and adding these gives a result of <math>\boxed{401}</math>. <math>QED \blacksquare</math>
 +
 +
Solution by [[User:a1b2|a1b2]]
 
== See also ==
 
== See also ==
 
{{AIME box|year=1984|num-b=11|num-a=13}}
 
{{AIME box|year=1984|num-b=11|num-a=13}}

Revision as of 22:21, 13 April 2018

Problem

A function $f$ is defined for all real numbers and satisfies $f(2+x)=f(2-x)$ and $f(7+x)=f(7-x)$ for all $x$. If $x=0$ is a root for $f(x)=0$, what is the least number of roots $f(x)=0$ must have in the interval $-1000\leq x \leq 1000$?

Solution 1

If $f(2+x)=f(2-x)$, then substituting $t=2+x$ gives $f(t)=f(4-t)$. Similarly, $f(t)=f(14-t)$. In particular, \[f(t)=f(14-t)=f(14-(4-t))=f(t+10)\]

Since $0$ is a root, all multiples of $10$ are roots, and anything congruent to $4\pmod{10}$ are also roots. To see that these may be the only integer roots, observe that the function \[f(x) = \sin \frac{\pi x}{10}\sin \frac{\pi (x-4)}{10}\] satisfies the conditions and has no other roots.

In the interval $-1000\leq x\leq 1000$, there are $201$ multiples of $10$ and $200$ numbers that are congruent to $4 \pmod{10}$, therefore the minimum number of roots is $\boxed{401}$.

Solution 2 (non-rigorous)

We notice that the function has reflectional symmetry across both $x=2$ and $x=7$. We also use the fact that $x=0$ is a root. This shows that $x=4$ and $x=14$ are also roots. We then apply the reflection across the other axis to form $x=\pm 10$ as roots. Continuing this shows that the roots are $0 \mod 10$ or $4 \mod 10$. There are 200 positive roots and 200 negative roots. 0 is also a root, and adding these gives a result of $\boxed{401}$. $QED \blacksquare$

Solution by a1b2

See also

1984 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions