Difference between revisions of "2004 AMC 10B Problems/Problem 22"
m (→Solution) |
(→Solution) |
||
Line 4: | Line 4: | ||
<math> \mathrm{(A) \ } \frac{3\sqrt{5}}{2} \qquad \mathrm{(B) \ } \frac{7}{2} \qquad \mathrm{(C) \ } \sqrt{15} \qquad \mathrm{(D) \ } \frac{\sqrt{65}}{2} \qquad \mathrm{(E) \ } \frac{9}{2} </math> | <math> \mathrm{(A) \ } \frac{3\sqrt{5}}{2} \qquad \mathrm{(B) \ } \frac{7}{2} \qquad \mathrm{(C) \ } \sqrt{15} \qquad \mathrm{(D) \ } \frac{\sqrt{65}}{2} \qquad \mathrm{(E) \ } \frac{9}{2} </math> | ||
− | ==Solution== | + | ==Solution 1== |
This is obviously a right triangle. Pick a coordinate system so that the right angle is at <math>(0,0)</math> and the other two vertices are at <math>(12,0)</math> and <math>(0,5)</math>. | This is obviously a right triangle. Pick a coordinate system so that the right angle is at <math>(0,0)</math> and the other two vertices are at <math>(12,0)</math> and <math>(0,5)</math>. | ||
Line 13: | Line 13: | ||
The distance of these two points is then <math>\sqrt{ (6-2)^2 + (2.5-2)^2 } = \sqrt{16.25} = \sqrt{\frac{65}4} = \boxed{\frac{\sqrt{65}}2}</math>. | The distance of these two points is then <math>\sqrt{ (6-2)^2 + (2.5-2)^2 } = \sqrt{16.25} = \sqrt{\frac{65}4} = \boxed{\frac{\sqrt{65}}2}</math>. | ||
+ | |||
+ | ==Solution 2== | ||
+ | We directly apply Euler’s Theorem, which states that if the circumcenter is <math>O</math> and the incenter <math>I</math>, and the inradius is <math>r</math> and the circumradius is <math>R</math>, then | ||
+ | <cmath>OI^2=R(R-2r)</cmath> | ||
+ | |||
+ | We notice that this is a right triangle, and hence has area <math>30</math>. We then find the inradius with the formula <math>A=rs</math>, where <math>s</math> denotes semiperimeter. We easily see that <math>s=15</math>, so <math>r=2</math>. | ||
+ | |||
+ | We now find the circumradius with the formula <math>A=\frac{abc}{4R}</math>. Solving for <math>R</math> gives <math>R=\frac{13}{2}</math>. | ||
+ | |||
+ | Substituting all of this back into our formula gives: | ||
+ | \begin{align*} | ||
+ | OI^2=R(R-2r) &= \frac{13}{2}\left(\frac{13}{2}-4\right) \\ | ||
+ | &= \frac{13}{2}\cdot \frac{5}{2} \\ | ||
+ | &= \frac{65}{2} | ||
+ | \end{align*} | ||
+ | So, <math>OI=\frac{\sqrt{65}}{2}\implies \boxed{D}</math> | ||
== See also == | == See also == |
Revision as of 01:02, 10 April 2018
Contents
Problem
A triangle with sides of 5, 12, and 13 has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?
Solution 1
This is obviously a right triangle. Pick a coordinate system so that the right angle is at and the other two vertices are at and .
As this is a right triangle, the center of the circumcircle is in the middle of the hypotenuse, at .
The radius of the inscribed circle can be computed using the well-known identity , where is the area of the triangle and its perimeter. In our case, and . Thus, . As the inscribed circle touches both legs, its center must be at .
The distance of these two points is then .
Solution 2
We directly apply Euler’s Theorem, which states that if the circumcenter is and the incenter , and the inradius is and the circumradius is , then
We notice that this is a right triangle, and hence has area . We then find the inradius with the formula , where denotes semiperimeter. We easily see that , so .
We now find the circumradius with the formula . Solving for gives .
Substituting all of this back into our formula gives: \begin{align*} OI^2=R(R-2r) &= \frac{13}{2}\left(\frac{13}{2}-4\right) \\ &= \frac{13}{2}\cdot \frac{5}{2} \\ &= \frac{65}{2} \end{align*} So,
See also
2004 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.