Difference between revisions of "2017 AIME II Problems/Problem 9"
m (→Solution 1) |
|||
Line 28: | Line 28: | ||
Thus, the answer is <math>\frac{7!(42)}{7!(42) + 21(15)(7)(5!)}</math>. Dividing out <math>5!</math> yields <math>\frac{42(42)}{42(42) + 21(15)(7)}</math> which is equal to <math>\frac{2(42)}{2(42) + 15(7)}</math> which is equal to <math>\frac{12}{12 + 15}</math> which is equal to <math>\frac{4}{9}</math> giving a final answer of <math>\boxed{013}</math>. | Thus, the answer is <math>\frac{7!(42)}{7!(42) + 21(15)(7)(5!)}</math>. Dividing out <math>5!</math> yields <math>\frac{42(42)}{42(42) + 21(15)(7)}</math> which is equal to <math>\frac{2(42)}{2(42) + 15(7)}</math> which is equal to <math>\frac{12}{12 + 15}</math> which is equal to <math>\frac{4}{9}</math> giving a final answer of <math>\boxed{013}</math>. | ||
− | == | + | ==Solution 4== |
We can rewrite the problem as "What is the probability that, given 8 cards with numbers a, b, c, d, e, f, g, g and some assortment of seven colors A, B, C, D, E, F, G, G where G is repeated, one of the cards is Gg?" Note that this is a valid restatement because Sharon has to have two of one number and two of one color. She needs to be able to take away one of the cards with the duplicate number, but this also has to have the duplicate color. There are two cases. | We can rewrite the problem as "What is the probability that, given 8 cards with numbers a, b, c, d, e, f, g, g and some assortment of seven colors A, B, C, D, E, F, G, G where G is repeated, one of the cards is Gg?" Note that this is a valid restatement because Sharon has to have two of one number and two of one color. She needs to be able to take away one of the cards with the duplicate number, but this also has to have the duplicate color. There are two cases. | ||
Case I: One of the cards is Gg. This implies that the other card with color G can be placed in <math>6</math> ways, and the rest of the colors can be paired with cards in <math>6!</math> ways. | Case I: One of the cards is Gg. This implies that the other card with color G can be placed in <math>6</math> ways, and the rest of the colors can be paired with cards in <math>6!</math> ways. | ||
− | Case II: None of the cards are Gg. This implies that the cards with color G can be chosen in <math> | + | Case II: None of the cards are Gg. This implies that the cards with color G can be chosen in <math>\dbinom{6}{2}=15</math> ways, and the rest of the colors can be paired with cards in <math>\frac{6!}{2}</math> ways, with the divide by 2 because of the double-g. |
Note that there is no case with Gg, Gg because all 49 cards are unique! | Note that there is no case with Gg, Gg because all 49 cards are unique! | ||
− | Therefore our answer is <math>\frac{6 | + | Therefore our answer is <math>\frac{6\times6!}{\frac{15}{2}\times6! + 6\times6!}=\frac{4}{9}</math>, so <math>\boxed{013}</math>. |
=See Also= | =See Also= | ||
{{AIME box|year=2017|n=II|num-b=8|num-a=10}} | {{AIME box|year=2017|n=II|num-b=8|num-a=10}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:41, 8 April 2018
Problem
A special deck of cards contains cards, each labeled with a number from to and colored with one of seven colors. Each number-color combination appears on exactly one card. Sharon will select a set of eight cards from the deck at random. Given that she gets at least one card of each color and at least one card with each number, the probability that Sharon can discard one of her cards and have at least one card of each color and at least one card with each number is , where and are relatively prime positive integers. Find .
Solution 1
Without loss of generality, assume that the numbers on Sharon's cards are , , , , , , , and , in that order, and assume the colors are red, red, and six different arbitrary colors. There are ways of assigning the two red cards to the numbers; we subtract because we cannot assign the two reds to the two 's. In order for Sharon to be able to remove at least one card and still have at least one card of each color, one of the reds have to be assigned with one of the s. The number of ways for this to happen is . Each of these assignments is equally likely, so desired probability is .
Solution 2
First note that out of the selected cards, one pair of cards have to share the same number and another pair of cards have to share the same color. Now, these pairs of cards can't be the same or else there will be cards which are completely same. Then, WLOG let the numbers be and and the colors be and . We therefore obtain only cases:
Case One: and In this case, we can discard . There are situations in this case.
Case Two: and In this case, we can't discard. There are situations in this case.
So the probability is , giving us the answer of .
Solution 3
There are ways to choose a set of 7 cards that have all the numbers from 1-7 and all 7 colors. There are then cards remaining. Thus, there are desired sets.
Now, the next thing to find is the number of ways to choose 8 cards where there is not a set of 7 such cards. In this case, one color must have 2 cards and one number must have 2 cards, and they can't be the same number/color card. The number of ways to pick this is equal to a multiplication of ways to pick 2 numbers, colors to assign them to, ways to pick 2 nonchosen colors, ways to pick a number to assign them to, and ways to assign the rest.
Thus, the answer is . Dividing out yields which is equal to which is equal to which is equal to giving a final answer of .
Solution 4
We can rewrite the problem as "What is the probability that, given 8 cards with numbers a, b, c, d, e, f, g, g and some assortment of seven colors A, B, C, D, E, F, G, G where G is repeated, one of the cards is Gg?" Note that this is a valid restatement because Sharon has to have two of one number and two of one color. She needs to be able to take away one of the cards with the duplicate number, but this also has to have the duplicate color. There are two cases.
Case I: One of the cards is Gg. This implies that the other card with color G can be placed in ways, and the rest of the colors can be paired with cards in ways.
Case II: None of the cards are Gg. This implies that the cards with color G can be chosen in ways, and the rest of the colors can be paired with cards in ways, with the divide by 2 because of the double-g.
Note that there is no case with Gg, Gg because all 49 cards are unique!
Therefore our answer is , so .
See Also
2017 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.