Difference between revisions of "2018 AIME II Problems/Problem 2"
(Created page with "==Problem== Let <math>a_{0} = 2</math>, <math>a_{1} = 5</math>, and <math>a_{2} = 8</math>, and for <math>n > 2</math> define <math>a_{n}</math> recursively to be the remaind...") |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let <math>a_{0} = 2</math>, <math>a_{1} = 5</math>, and <math>a_{2} = 8</math>, and for <math>n > 2</math> define <math>a_{n}</math> recursively to be the remainder when <math>4</math>(<math>a_{n-1}</math> + <math>a_{n-2}</math> + <math>a_{n-3}</math>) is divided by <math>11</math>. Find <math>a_{2018}</math> • <math>a_{2020}</math> • <math>a_{2022}</math>. | + | Let <math>a_{0} = 2</math>, <math>a_{1} = 5</math>, and <math>a_{2} = 8</math>, and for <math>n > 2</math> define <math>a_{n}</math> recursively to be the remainder when <math>4</math>(<math>a_{n-1}</math> <math>+</math> <math>a_{n-2}</math> <math>+</math> <math>a_{n-3}</math>) is divided by <math>11</math>. Find <math>a_{2018}</math> • <math>a_{2020}</math> • <math>a_{2022}</math>. |
+ | |||
+ | ==Solution== | ||
+ | |||
+ | When given a sequence problem, one good thing to do is to check if the sequence repeats itself or if there is a pattern. | ||
+ | |||
+ | After computing more values of the sequence, it can be observed that the sequence repeats itself every 10 terms starting at <math>a_{0}</math>. | ||
+ | |||
+ | <math>a_{0} = 2</math>, | ||
+ | <math>a_{1} = 5</math>, | ||
+ | <math>a_{2} = 8</math>, | ||
+ | <math>a_{3} = 5</math>, | ||
+ | <math>a_{4} = 6</math>, | ||
+ | <math>a_{5} = 10</math>, | ||
+ | <math>a_{6} = 7</math>, | ||
+ | <math>a_{7} = 4</math>, | ||
+ | <math>a_{8} = 7</math>, | ||
+ | <math>a_{9} = 6</math>, | ||
+ | <math>a_{10} = 2</math>, | ||
+ | <math>a_{11} = 5</math>, | ||
+ | <math>a_{12} = 8</math>, | ||
+ | <math>a_{13} = 5</math> | ||
+ | |||
+ | We can simplify the expression we need to solve to <math>a_{8}</math> • <math>a_{10}</math> • <math>a_{2}</math>. | ||
+ | |||
+ | Our answer is <math>7</math> • <math>2</math> • <math>8</math> <math>= \boxed{112}</math>. | ||
+ | |||
+ | ==See Also== | ||
{{AIME box|year=2018|n=II|num-b=1|num-a=3}} | {{AIME box|year=2018|n=II|num-b=1|num-a=3}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 08:30, 24 March 2018
Problem
Let , , and , and for define recursively to be the remainder when ( ) is divided by . Find • • .
Solution
When given a sequence problem, one good thing to do is to check if the sequence repeats itself or if there is a pattern.
After computing more values of the sequence, it can be observed that the sequence repeats itself every 10 terms starting at .
, , , , , , , , , , , , ,
We can simplify the expression we need to solve to • • .
Our answer is • • .
See Also
2018 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.