Difference between revisions of "2005 AIME II Problems/Problem 9"

m (Solution 3)
(Solution 1)
Line 6: Line 6:
 
We know by [[De Moivre's Theorem]] that <math>(\cos t + i \sin t)^n = \cos nt + i \sin nt</math> for all [[real number]]s <math>t</math> and all [[integer]]s <math>n</math>.  So, we'd like to somehow convert our given expression into a form from which we can apply De Moivre's Theorem.   
 
We know by [[De Moivre's Theorem]] that <math>(\cos t + i \sin t)^n = \cos nt + i \sin nt</math> for all [[real number]]s <math>t</math> and all [[integer]]s <math>n</math>.  So, we'd like to somehow convert our given expression into a form from which we can apply De Moivre's Theorem.   
  
Recall the [[trigonometric identities]] <math>\cos (\frac{\pi}2 - u) = \sin u</math> and <math>\sin (\frac{\pi}2 - u) = \cos u</math> hold for all real <math>u</math>.  If our original equation holds for all <math>t</math>, it must certainly hold for <math>t = \frac{\pi}2 - u</math>.  Thus, the question is equivalent to asking for how many [[positive integer]]s <math>n \leq 1000</math> we have that <math>\left(\sin\left(\frac\pi2 - u\right) + i \cos\left(\frac\pi 2 - u\right)\right)^n = \sin n \left(\frac\pi2 -u \right) + i\cos n \left(\frac\pi2 - u\right)</math> holds for all real <math>u</math>.
+
Recall the [[trigonometric identities]] <math>\cos \left(\frac{\pi}2 - u\right) = \sin u</math> and <math>\sin \left(\frac{\pi}2 - u\right) = \cos u</math> hold for all real <math>u</math>.  If our original equation holds for all <math>t</math>, it must certainly hold for <math>t = \frac{\pi}2 - u</math>.  Thus, the question is equivalent to asking for how many [[positive integer]]s <math>n \leq 1000</math> we have that <math>\left(\sin\left(\frac\pi2 - u\right) + i \cos\left(\frac\pi 2 - u\right)\right)^n = \sin n \left(\frac\pi2 -u \right) + i\cos n \left(\frac\pi2 - u\right)</math> holds for all real <math>u</math>.
  
 
<math>\left(\sin\left(\frac\pi2 - u\right) + i \cos\left(\frac\pi 2 - u\right)\right)^n = \left(\cos u + i \sin u\right)^n = \cos nu + i\sin nu</math>.  We know that two [[complex number]]s are equal if and only if both their [[real part]] and [[imaginary part]] are equal.  Thus, we need to find all <math>n</math> such that <math>\cos n u = \sin n\left(\frac\pi2 - u\right)</math> and <math>\sin nu = \cos n\left(\frac\pi2 - u\right)</math> hold for all real <math>u</math>.
 
<math>\left(\sin\left(\frac\pi2 - u\right) + i \cos\left(\frac\pi 2 - u\right)\right)^n = \left(\cos u + i \sin u\right)^n = \cos nu + i\sin nu</math>.  We know that two [[complex number]]s are equal if and only if both their [[real part]] and [[imaginary part]] are equal.  Thus, we need to find all <math>n</math> such that <math>\cos n u = \sin n\left(\frac\pi2 - u\right)</math> and <math>\sin nu = \cos n\left(\frac\pi2 - u\right)</math> hold for all real <math>u</math>.

Revision as of 04:57, 21 March 2018

Problem

For how many positive integers $n$ less than or equal to $1000$ is $(\sin t + i \cos t)^n = \sin nt + i \cos nt$ true for all real $t$?

Solution

Solution 1

We know by De Moivre's Theorem that $(\cos t + i \sin t)^n = \cos nt + i \sin nt$ for all real numbers $t$ and all integers $n$. So, we'd like to somehow convert our given expression into a form from which we can apply De Moivre's Theorem.

Recall the trigonometric identities $\cos \left(\frac{\pi}2 - u\right) = \sin u$ and $\sin \left(\frac{\pi}2 - u\right) = \cos u$ hold for all real $u$. If our original equation holds for all $t$, it must certainly hold for $t = \frac{\pi}2 - u$. Thus, the question is equivalent to asking for how many positive integers $n \leq 1000$ we have that $\left(\sin\left(\frac\pi2 - u\right) + i \cos\left(\frac\pi 2 - u\right)\right)^n = \sin n \left(\frac\pi2 -u \right) + i\cos n \left(\frac\pi2 - u\right)$ holds for all real $u$.

$\left(\sin\left(\frac\pi2 - u\right) + i \cos\left(\frac\pi 2 - u\right)\right)^n = \left(\cos u + i \sin u\right)^n = \cos nu + i\sin nu$. We know that two complex numbers are equal if and only if both their real part and imaginary part are equal. Thus, we need to find all $n$ such that $\cos n u = \sin n\left(\frac\pi2 - u\right)$ and $\sin nu = \cos n\left(\frac\pi2 - u\right)$ hold for all real $u$.

$\sin x = \cos y$ if and only if either $x + y = \frac \pi 2 + 2\pi \cdot k$ or $x - y = \frac\pi2 + 2\pi\cdot k$ for some integer $k$. So from the equality of the real parts we need either $nu + n\left(\frac\pi2 - u\right) = \frac\pi 2 + 2\pi \cdot k$, in which case $n = 1 + 4k$, or we need $-nu + n\left(\frac\pi2 - u\right) = \frac\pi 2 + 2\pi \cdot k$, in which case $n$ will depend on $u$ and so the equation will not hold for all real values of $u$. Checking $n = 1 + 4k$ in the equation for the imaginary parts, we see that it works there as well, so exactly those values of $n$ congruent to $1 \pmod 4$ work. There are $\boxed{250}$ of them in the given range.

Solution 2

This problem begs us to use the familiar identity $e^{it} = \cos(t) + i \sin(t)$. Notice, $\sin(t) + i \cos(t) = i(\cos(t) - i \sin(t)) = i e^{-it}$ since $\sin(-t) = -\sin(t)$. Using this, $(\sin(t) + i \cos(t))^n = \sin(nt) + i \cos(nt)$ is recast as $(i e^{-it})^n = i e^{-itn}$. Hence we must have $i^n = i \Rightarrow i^{n-1} = 1 \Rightarrow n \equiv 1 \bmod{4}$. Thus since $1000$ is a multiple of $4$ exactly one quarter of the residues are congruent to $1$ hence we have $\boxed{250}$.

Solution 3

We can rewrite $\sin(t)$ as $\cos\left(\frac{\pi}{2}-t\right)$ and $\cos(t)$ as $\sin\left(\frac{\pi}{2}-t\right)$. This means that $\sin t + i\cos t = e^{i\left(\frac{\pi}{2}-t\right)}=\frac{e^{\frac{\pi i}{2}}}{e^{it}}$. This theorem also tells us that $e^{\frac{\pi i}{2}}=i$, so $\sin t + i\cos t = \frac{i}{e^{it}}$. By the same line of reasoning, we have $\sin nt + i\cos nt = \frac{i}{e^{int}}$.

For the statement in the question to be true, we must have $\left(\frac{i}{e^{it}}\right)^n=\frac{i}{e^{int}}$. The left hand side simplifies to $\frac{i^n}{e^{int}}$. We cancel the denominators and find that the only thing that needs to be true is that $i^n=i$. This is true if $n\equiv1\pmod{4}$, and there are $\boxed{250}$ such numbers between $1$ and $1000$. Solution by Zeroman

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

See Also

2005 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions