Difference between revisions of "2018 AIME I Problems/Problem 4"
Elephant353 (talk | contribs) m (→Solution 2 (Law of Cosines)) |
m (→Solution 2 (Law of Cosines)) |
||
Line 46: | Line 46: | ||
<cmath>10=\frac{39x}{25}\implies x=\frac{250}{39}</cmath> | <cmath>10=\frac{39x}{25}\implies x=\frac{250}{39}</cmath> | ||
Thus, the desired answer is <math>\boxed{289}</math> ~ blitzkrieg21 | Thus, the desired answer is <math>\boxed{289}</math> ~ blitzkrieg21 | ||
+ | |||
+ | ==Solution 3== | ||
+ | In isosceles triangle, draw the altitude from <math>D</math> onto <math>\overline{AD}</math>. Let the point of intersection be <math>F</math>. Clearly, <math>AE=10-AD</math>, and hence <math>AF=\frac{10-AD}{2}</math>. | ||
+ | |||
+ | Now, we recognise that the perpendicular from <math>A</math> onto <math>\overline{AD}</math> gives us two <math>6</math>-<math>8</math>-<math>10</math> triangles. So, we calculate <math>\sin \angle ABC=\frac{4}{5}</math> and <math>\cos \angle ABC=\frac{3}{5}</math> | ||
+ | |||
+ | <math>\angle BAC = 180-2\cdot\angle ABC</math>. And hence, | ||
+ | <math>\begin{align*} \cos \angle BAC = \cos \angle (180-2\cdot\angle ABC) | ||
+ | &= -\cos (2\cdot\angle ABC) | ||
+ | &= \sin^2 \angle ABC - \cos^2 \angle ABC | ||
+ | &= \frac{16}{25}-\frac{9}{25}=\frac{7}{25}</math> | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2018|n=I|num-b=3|num-a=5}} | {{AIME box|year=2018|n=I|num-b=3|num-a=5}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 04:07, 8 March 2018
Problem 4
In and . Point lies strictly between and on and point lies strictly between and on ) so that . Then can be expressed in the form , where and are relatively prime positive integers. Find .
Solution 1
We draw the altitude from to to get point . We notice that the triangle's height from to is 8 because it is a Right Triangle. To find the length of , we let be the height and set up an equation by finding two ways to express the area. The equation is , which leaves us with . We then solve for the length , which is done through pythagorean theorm and get = . We can now see that is a Right Triangle. Thus, we set as , and yield that . Now, we can see , so we have . Solving this equation, we yield , or . Thus, our final answer is . ~bluebacon008
Solution 2 (Law of Cosines)
As shown in the diagram, let denote . Let us denote the foot of the altitude of to as . Note that can be expressed as and is a triangle . Therefore, and . Before we can proceed with the Law of Cosines, we must determine . Using LOC, we can write the following statement: Thus, the desired answer is ~ blitzkrieg21
Solution 3
In isosceles triangle, draw the altitude from onto . Let the point of intersection be . Clearly, , and hence .
Now, we recognise that the perpendicular from onto gives us two -- triangles. So, we calculate and
. And hence, $\begin{align*} \cos \angle BAC = \cos \angle (180-2\cdot\angle ABC) &= -\cos (2\cdot\angle ABC) &= \sin^2 \angle ABC - \cos^2 \angle ABC &= \frac{16}{25}-\frac{9}{25}=\frac{7}{25}$ (Error compiling LaTeX. Unknown error_msg)
See Also
2018 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.