Difference between revisions of "2018 AIME I Problems/Problem 1"
m (Removed protection from "2018 AIME I Problems/Problem 1") |
|||
Line 1: | Line 1: | ||
+ | ==Question== | ||
+ | Let <math>S</math> be the number of ordered pairs of integers <math>(a,b)</math> with <math>1 \leq a \leq 100</math> and <math>b \geq 0</math> such that the polynomial <math>x^2+ax+b</math> can be factored into the product of two (not necessarily distinct) linear factors with integer coefficients. Find the remainder when <math>S</math> is divided by <math>1000</math>. | ||
+ | ==Solution== | ||
+ | You let the linear factors be as <math>(x+c)(x+d)</math>. | ||
+ | Then, obviously <math>a=c+d</math> and <math>b=cd</math>. | ||
+ | We know that <math>1\le a\le 100</math> and <math>b\ge 0</math>, so <math>c</math> and <math>d</math> both have to be positive. | ||
+ | However, <math>a</math> cannot be <math>0</math>, so at least one of <math>c</math> and <math>d</math> must be greater than <math>0</math>, ie positive. | ||
+ | Also, <math>a</math> cannot be greater than <math>100</math>, so <math>c+d</math> must be less than or equal to <math>100</math>. | ||
+ | Essentially, if we plot the solutions, we get a triangle on the coordinate plane with vertices <math>(0,0), (0, 100),</math> and <math>(100,0)</math>. Remember that <math>(0,0)</math> does not work, so there is a square with top right corner <math>(1,1)</math>. | ||
+ | Note that <math>c</math> and <math>d</math> are interchangeable, since they end up as <math>a</math> and <math>b</math> in the end anyways. Thus, we simply draw a line from <math>(1,1)</math> to <math>(50,50)</math>, designating one of the halves as our solution (since the other side is simply the coordinates flipped). | ||
+ | We note that the pattern from <math>(1,1)</math> to <math>(50,50)</math> is <math>2+3+4+\dots+51</math> solutions and from <math>(51, 49)</math> to <math>(100,0)</math> is <math>50+49+48+\dots+1</math> solutions, since we can decrease the <math>y</math>-value by <math>1</math> until <math>0</math> for each coordinate. | ||
+ | Adding up gives <cmath>\dfrac{2+51}{2}\cdot 50+\dfrac{50+1}{2}\cdot 50.</cmath> | ||
+ | This gives us <math>2600</math>, and <math>2600\equiv 600 \bmod{1000}.</math> | ||
− | + | Thus, the answer is: <cmath>\boxed{600}.</cmath> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 15:08, 7 March 2018
Question
Let be the number of ordered pairs of integers with and such that the polynomial can be factored into the product of two (not necessarily distinct) linear factors with integer coefficients. Find the remainder when is divided by .
Solution
You let the linear factors be as .
Then, obviously and .
We know that and , so and both have to be positive.
However, cannot be , so at least one of and must be greater than , ie positive.
Also, cannot be greater than , so must be less than or equal to .
Essentially, if we plot the solutions, we get a triangle on the coordinate plane with vertices and . Remember that does not work, so there is a square with top right corner .
Note that and are interchangeable, since they end up as and in the end anyways. Thus, we simply draw a line from to , designating one of the halves as our solution (since the other side is simply the coordinates flipped).
We note that the pattern from to is solutions and from to is solutions, since we can decrease the -value by until for each coordinate.
Adding up gives This gives us , and
Thus, the answer is: