Difference between revisions of "2003 AIME I Problems/Problem 4"
(added problem and solution) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | Given that <math> \log_{10} \sin x + \log_{10} \cos x = -1 </math> and that <math> \log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1), </math> find <math> n. </math> | ||
+ | == Solution == | ||
+ | <math> \log_{10} \sin x + \log_{10} \cos x = -1 </math> | ||
+ | |||
+ | <math> \log_{10}(\sin x \cos x) = -1 </math> | ||
+ | |||
+ | <math> \sin x \cos x = \frac{1}{10} </math> | ||
+ | |||
+ | <math> \log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1) </math> | ||
+ | |||
+ | <math> \log_{10} (\sin x + \cos x) = \frac{1}{2}(\log_{10} n - \log_{10} 10) </math> | ||
+ | |||
+ | <math> \log_{10} (\sin x + \cos x) = \frac{1}{2}(\log_{10} \frac{n}{10}) </math> | ||
+ | |||
+ | <math> \log_{10} (\sin x + \cos x) = (\log_{10} \sqrt{\frac{n}{10}}) </math> | ||
− | == | + | <math> \sin x + \cos x = \sqrt{\frac{n}{10}} </math> |
+ | |||
+ | <math> (\sin x + \cos x)^{2} = (\sqrt{\frac{n}{10}})^2 </math> | ||
+ | |||
+ | <math> \sin^2 x + \cos^2 x +2 \sin x \cos x= \frac{n}{10} </math> | ||
+ | |||
+ | <math> 1 + 2(\frac{1}{10}) = \frac{n}{10} </math> | ||
+ | |||
+ | <math> \frac{12}{10} = \frac{n}{10} </math> | ||
+ | |||
+ | <math> n = 012 </math> | ||
== See also == | == See also == | ||
* [[2003 AIME I Problems]] | * [[2003 AIME I Problems]] | ||
+ | |||
+ | * [[2003 AIME I Problems/Problem 3|Previous Problem]] | ||
+ | |||
+ | * [[2003 AIME I Problems/Problem 5|Next Problem]] | ||
+ | [[Category:Intermediate Algebra Problems]] | ||
+ | [[Category:Intermediate Trigonometry Problems]] |
Revision as of 18:11, 4 August 2006
Problem
Given that and that find
Solution