Difference between revisions of "2018 AMC 10B Problems/Problem 5"
m (→Solution 2 (Using Answer Choices)) |
(→Solution 1) |
||
Line 7: | Line 7: | ||
==Solution 1== | ==Solution 1== | ||
− | Consider finding the number of subsets that do not contain any primes. There are four primes in the set: <math>2</math>, <math>3</math>, <math>5</math>, and <math>7</math>. This means that the number of subsets without any primes is the number of subsets of <math>\{4, 6, 8, 9\}</math>, which is just <math>2^4 = 16</math>. The number of subsets with at least one prime is the number of subsets minus the number of subsets without any primes. The number of subsets is <math>2^8 = 256</math>. Thus, the answer is <math>256 - 16 = | + | Consider finding the number of subsets that do not contain any primes. There are four primes in the set: <math>2</math>, <math>3</math>, <math>5</math>, and <math>7</math>. This means that the number of subsets without any primes is the number of subsets of <math>\{4, 6, 8, 9\}</math>, which is just <math>2^4 = 16</math>. The number of subsets with at least one prime is the number of subsets minus the number of subsets without any primes. The number of subsets is <math>2^8 = 256</math>. Thus, the answer is <math>256 - 16 = \boxed{\textbf{(D) }240}</math> |
==Solution 2 (Using Answer Choices)== | ==Solution 2 (Using Answer Choices)== |
Revision as of 19:48, 25 February 2018
Problem
How many subsets of contain at least one prime number?
Solution 1
Consider finding the number of subsets that do not contain any primes. There are four primes in the set: , , , and . This means that the number of subsets without any primes is the number of subsets of , which is just . The number of subsets with at least one prime is the number of subsets minus the number of subsets without any primes. The number of subsets is . Thus, the answer is
Solution 2 (Using Answer Choices)
Well, there are 4 composite numbers, and you can list them in a 1 number format, a 2 number, 3 number, and a 4 number format. Now, we can use permutations
. Using the answer choices, the only multiple of 15 is
By: K6511
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.