Difference between revisions of "1992 AHSME Problems/Problem 24"
(Correction) |
m (Added a little more detail to the solution) |
||
Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
− | <math>\fbox{C}</math> Use vectors. Place an origin at <math>A</math>, with <math>B = p, D = q, C = p + q</math>. We know that <math>\|p \times q\|=10</math>, and also <math>E=\frac{2}{3}p, F=p+\frac{2}{5}q, G = \frac{2}{5}q</math>, and now we can find the area of <math>EFHG</math> by dividing it into two triangles and using cross-products. | + | <math>\fbox{C}</math> Use vectors. Place an origin at <math>A</math>, with <math>B = p, D = q, C = p + q</math>. We know that <math>\|p \times q\|=10</math>, and also <math>E=\frac{2}{3}p, F=p+\frac{2}{5}q, G = \frac{2}{5}q</math>, and now we can find the area of <math>EFHG</math> by dividing it into two triangles and using cross-products (the expressions simplify using the fact that the cross-product distributes over addition, it is anticommutative, and a vector crossed with itself gives zero). |
== See also == | == See also == |
Revision as of 06:24, 20 February 2018
Problem
Let be a parallelogram of area with and . Locate and on segments and , respectively, with . Let the line through parallel to intersect at . The area of quadrilateral is
Solution
Use vectors. Place an origin at , with . We know that , and also , and now we can find the area of by dividing it into two triangles and using cross-products (the expressions simplify using the fact that the cross-product distributes over addition, it is anticommutative, and a vector crossed with itself gives zero).
See also
1992 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.