Difference between revisions of "1992 AHSME Problems/Problem 24"
(Created page with "== Problem == Let <math>ABCD</math> be a parallelogram of area <math>10</math> with <math>AB=3</math> and <math>BC=5</math>. Locate <math>E,F</math> and <math>G</math> on segmen...") |
(Added a solution) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Let <math>ABCD</math> be a parallelogram of area <math>10</math> with <math>AB=3</math> and <math>BC=5</math>. Locate <math>E,F</math> and <math>G</math> on segments <math>\overline{AB},\overline{BC}</math> and <math>\overline{AD}</math>, respectively, with <math>AE=BF=AG=2</math>. Let the line through <math>G</math> parallel to <math>\overline{EF}</math> intersect <math>\overline{CD}</math> at <math>H</math>. The area of quadrilateral <math> | + | Let <math>ABCD</math> be a parallelogram of area <math>10</math> with <math>AB=3</math> and <math>BC=5</math>. Locate <math>E,F</math> and <math>G</math> on segments <math>\overline{AB},\overline{BC}</math> and <math>\overline{AD}</math>, respectively, with <math>AE=BF=AG=2</math>. Let the line through <math>G</math> parallel to <math>\overline{EF}</math> intersect <math>\overline{CD}</math> at <math>H</math>. The area of quadrilateral <math>EFHG</math> is |
<math>\text{(A) } 4\quad | <math>\text{(A) } 4\quad | ||
Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
− | <math>\fbox{C}</math> | + | <math>\fbox{C}</math> Use vectors. Place an origin at <math>A</math>, with <math>B = p, D = q, C = p + q</math>. We know that <math>\|pxq\|=10</math>, and also <math>E=\frac{2}{3}p, F=p+\frac{2}{5}q, G = \frac{2}{5}q</math>, and now we can find the area of <math>EFHG</math> by dividing it into two triangles and using cross-products. |
== See also == | == See also == |
Revision as of 02:20, 20 February 2018
Problem
Let be a parallelogram of area with and . Locate and on segments and , respectively, with . Let the line through parallel to intersect at . The area of quadrilateral is
Solution
Use vectors. Place an origin at , with . We know that , and also , and now we can find the area of by dividing it into two triangles and using cross-products.
See also
1992 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.