Difference between revisions of "2018 AMC 10B Problems/Problem 10"

(Solution 4 (Vectors))
(Solution 1)
Line 48: Line 48:
 
Consider the cross-sectional plane and label it b. Note that the volume of the triangular prism that encloses the pyramid is <math>bh/2=3</math>, and we want the rectangular pyramid that shares the base and height with the triangular prism. The volume of the pyramid is <math>bh/3</math>, so the answer is <math>\boxed{2}</math>. (AOPS12142015)
 
Consider the cross-sectional plane and label it b. Note that the volume of the triangular prism that encloses the pyramid is <math>bh/2=3</math>, and we want the rectangular pyramid that shares the base and height with the triangular prism. The volume of the pyramid is <math>bh/3</math>, so the answer is <math>\boxed{2}</math>. (AOPS12142015)
  
 +
==Solution 2==
 +
We can start by finding the total volume of the parallelepiped. It is <math>2 \cdot 3 \cdot 1 = 6</math>, because a rectangular parallelepiped is a rectangular prism.
  
.
+
Next, we can consider the wedge-shaped section made when the plane <math>BCHE</math> cuts the figure. We can find the volume of the triangular pyramid with base EFB and apex M. The area of EFB is <math>\frac{1}{2} \cdot 2 \cdot 3 = 3</math>. Since BC is given to be <math>1</math>, we have that FM is <math>\frac{1}{2}</math>. Using the formula for the volume of a triangular pyramid, we have <math>V = \frac{1}{3} \cdot \frac{1}{2} \cdot 3 = \frac{1}{2}</math>. Also, since the triangular pyramid with base HGC and apex M has the exact same dimensions, it has volume <math>\frac{1}{2}</math> as well.
 +
 
 +
The original wedge we considered in the last step has volume <math>3</math>, because it is half of the volume of the parallelepiped. We can subtract out the parts we found to have <math>3 - \frac{1}{2} \cdot 2 = 2</math>. Thus, the volume of the figure we are trying to find is <math>2</math>. This means that the correct answer choice is <math>\boxed{E}</math>.
 +
 
 +
Written by: Archimedes15
 +
 
 +
NOTE: For those who think that it isn't a rectangular prism, please read the problem. It says "rectangular parallelepiped." If a parallelepiped is such that all of the faces are rectangles, it is a rectangular prism.
  
 
==See Also==
 
==See Also==

Revision as of 18:57, 17 February 2018

Problem

In the rectangular parallelpiped shown, $AB$ = $3$, $BC$ = $1$, and $CG$ = $2$. Point $M$ is the midpoint of $\overline{FG}$. What is the volume of the rectangular pyramid with base $BCHE$ and apex $M$?


[asy] size(250); defaultpen(fontsize(10pt)); pair A =origin; pair B = (4.75,0); pair E1=(0,3); pair F = (4.75,3); pair G = (5.95,4.2); pair C = (5.95,1.2); pair D = (1.2,1.2); pair H= (1.2,4.2); pair M = ((4.75+5.95)/2,3.6); draw(E1--M--H--E1--A--B--E1--F--B--M--C--G--H); draw(B--C); draw(F--G); draw(A--D--H--C--D,dashed); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,E); label("$D$",D,W); label("$E$",E1,W); label("$F$",F,SW); label("$G$",G,NE); label("$H$",H,NW); label("$M$",M,N); dot(A); dot(B); dot(E1); dot(F); dot(G); dot(C); dot(D); dot(H); dot(M); label("3",A/2+B/2,S); label("2",C/2+G/2,E); label("1",C/2+B/2,SE); [/asy]

$\textbf{(A) } 1 \qquad \textbf{(B) } \frac{4}{3} \qquad \textbf{(C) } \frac{3}{2} \qquad \textbf{(D) } \frac{5}{3} \qquad \textbf{(E) } 2$

Solution 1

Consider the cross-sectional plane and label it b. Note that the volume of the triangular prism that encloses the pyramid is $bh/2=3$, and we want the rectangular pyramid that shares the base and height with the triangular prism. The volume of the pyramid is $bh/3$, so the answer is $\boxed{2}$. (AOPS12142015)

Solution 2

We can start by finding the total volume of the parallelepiped. It is $2 \cdot 3 \cdot 1 = 6$, because a rectangular parallelepiped is a rectangular prism.

Next, we can consider the wedge-shaped section made when the plane $BCHE$ cuts the figure. We can find the volume of the triangular pyramid with base EFB and apex M. The area of EFB is $\frac{1}{2} \cdot 2 \cdot 3 = 3$. Since BC is given to be $1$, we have that FM is $\frac{1}{2}$. Using the formula for the volume of a triangular pyramid, we have $V = \frac{1}{3} \cdot \frac{1}{2} \cdot 3 = \frac{1}{2}$. Also, since the triangular pyramid with base HGC and apex M has the exact same dimensions, it has volume $\frac{1}{2}$ as well.

The original wedge we considered in the last step has volume $3$, because it is half of the volume of the parallelepiped. We can subtract out the parts we found to have $3 - \frac{1}{2} \cdot 2 = 2$. Thus, the volume of the figure we are trying to find is $2$. This means that the correct answer choice is $\boxed{E}$.

Written by: Archimedes15

NOTE: For those who think that it isn't a rectangular prism, please read the problem. It says "rectangular parallelepiped." If a parallelepiped is such that all of the faces are rectangles, it is a rectangular prism.

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png