Difference between revisions of "2018 AMC 12B Problems/Problem 13"

(Redirected page to 2018 AMC 10B Problems/Problem 15)
 
Line 1: Line 1:
#REDIRECT[[2018 AMC 10B Problems/Problem 15]]
+
==Problem==
 +
 
 +
Square <math>ABCD</math> has side length <math>30</math>. Point <math>P</math> lies inside the square so that <math>AP = 12</math> and <math>BP = 26</math>. The centroids of <math>\triangle{ABP}</math>, <math>\triangle{BCP}</math>, <math>\triangle{CDP}</math>, and <math>\triangle{DAP}</math> are the vertices of a convex quadrilateral. What is the area of that quadrilateral?
 +
 
 +
<asy>
 +
unitsize(120);
 +
pair B = (0, 0), A = (0, 1), D = (1, 1), C = (1, 0), P = (1/4, 2/3);
 +
draw(A--B--C--D--cycle);
 +
dot(P);
 +
defaultpen(fontsize(10pt));
 +
draw(A--P--B);
 +
draw(C--P--D);
 +
label("$A$", A, W);
 +
label("$B$", B, W);
 +
label("$C$", C, E);
 +
label("$D$", D, E);
 +
label("$P$", P, N*1.5+E*0.5);
 +
dot(A);
 +
dot(B);
 +
dot(C);
 +
dot(D);
 +
</asy>
 +
 
 +
 
 +
<math>\textbf{(A) }100\sqrt{2}\qquad\textbf{(B) }100\sqrt{3}\qquad\textbf{(C) }200\qquad\textbf{(D) }200\sqrt{2}\qquad\textbf{(E) }200\sqrt{3}</math>[/quote]
 +
 
 +
==Solution==

Revision as of 17:50, 16 February 2018

Problem

Square $ABCD$ has side length $30$. Point $P$ lies inside the square so that $AP = 12$ and $BP = 26$. The centroids of $\triangle{ABP}$, $\triangle{BCP}$, $\triangle{CDP}$, and $\triangle{DAP}$ are the vertices of a convex quadrilateral. What is the area of that quadrilateral?

[asy] unitsize(120); pair B = (0, 0), A = (0, 1), D = (1, 1), C = (1, 0), P = (1/4, 2/3); draw(A--B--C--D--cycle); dot(P); defaultpen(fontsize(10pt)); draw(A--P--B); draw(C--P--D); label("$A$", A, W); label("$B$", B, W); label("$C$", C, E); label("$D$", D, E); label("$P$", P, N*1.5+E*0.5); dot(A); dot(B); dot(C); dot(D); [/asy]


$\textbf{(A) }100\sqrt{2}\qquad\textbf{(B) }100\sqrt{3}\qquad\textbf{(C) }200\qquad\textbf{(D) }200\sqrt{2}\qquad\textbf{(E) }200\sqrt{3}$[/quote]

Solution